* $d\pi - p\pi$ Bonds

This is a special type of bonding found in the molecular species having a central atom with *d* or *p* valence shell and surrounding groups with empty, partially or completely filled *p* or *d* orbitals. In addition to direct overlap resulting in the σ -bonding, $d\pi$ – $p\pi$ bonds are formed by the sidewise overlap. The exact nature of the orbitals from central atom participating in the formation of $d\pi$ – $p\pi$ bond can be obtained by resolving the irreducible components of the reducible representation based upon the vectors-set perpendicular to the σ -bonds for a particular geometry.

> Molecules with Central Atom Having d-Valence Shell for Sidewise Overlap

Some of the most well-documented cases in main-group chemistry are AB₄ type molecules like SiO_4^{4-} , SO_4^{2-} , PO_4^{3-} , CIO_4^{-} , SiF_4 ; which are found to have A–O bond lengths too short for the single bond confirming a $d\pi$ – $p\pi$ overlap responsible for this anomaly.

Figure 21. The $d\pi$ - $p\pi$ bonding in SO₄²⁻ ion.

LEGAL NOTICE

This document is an excerpt from the book entitled "A Textbook of Inorganic Chemistry – Volume 1 by Mandeep Dalal", and is the intellectual property of the Author/Publisher. The content of this document is protected by international copyright law and is valid only for the personal preview of the user who has originally downloaded it from the publisher's website (www.dalalinstitute.com). Any act of copying (including plagiarizing its language) or sharing this document will result in severe civil and criminal prosecution to the maximum extent possible under law.

Е	8C ₃	3C ₂	6S4	$6\sigma_d$		
1	1	1	1	1		$x^2 + y^2 + z^2$
1	1	1	-1	-1		
2	-1	2	0	0		$(2z^2 - x^2 + y^2, x^2 - y^2)$
3	0	-1	1	-1	$(\mathbf{R}_x, \mathbf{R}_y, \mathbf{R}_z)$	
3	0	-1	-1	1	(x, y, z)	(<i>xy</i> , <i>xz</i> , <i>yz</i>)
	E 1 1 2 3 3	E 8C ₃ 1 1 1 1 2 -1 3 0 3 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	E $8C_3$ $3C_2$ $6S_4$ $6\sigma_d$ 1 1 1 1 1 1 1 1 1 -1 -1 -1 2 -1 2 0 0 0 3 0 -1 1 -1 -1 3 0 -1 1 -1 1	E $8C_3$ $3C_2$ $6S_4$ $6\sigma_d$ 1 1 1 1 1 1 1 1 -1 -1 2 -1 2 0 0 3 0 -1 1 -1 3 0 -1 -1 (R_x, R_y, R_z)

The character table for T_d point group is given below.

The reducible representation based upon the s, p and d orbitals of the central atom in tetrahedral geometry is:

T _d	Е	8C ₃ 6S ₄	$6\sigma_d$
Γ_{π}	9		3
Resolving	the reducible	into irreducible components, the symmetry designations of	different orbitals of the
central ator	n taking part	in tetrahedral overlap are given below:	
	S	(info@dalalinstitute.com, +91-9802825820)	a_1
	p_x, p_y, p_z	www.dalalinstitute.com	t_2
	d_{xy}, d_{xz}, d_{yz}	SINCE 2012.	t_2
	$d_z^2, d_x^2 d_{x-y}^2$	arket, Sector 14 Rohtak, ha	е

Table 1. Reducible representation based on s, p and d orbitals.

The symmetry adapted linear combinations of atomic orbitals (SALCs) of surrounding groups for sidewise overlap can be obtained just by resolving the reducible representation based on the displacement vectors perpendicular to the axis of σ overlap.

Figure 22. The π -basis set for ligand orbitals in tetrahedral molecules.

The symmetry adapted linear combinations of these fall into two triply and one doubly degenerate irreducible representations labeled as e, t_1 and t_2 . The symmetry designations of different ligand orbitals taking part in sidewise overlap in tetrahedral molecules can be given as:

Table 2. Reducible representation based on perpendicular vectors in a tetrahedral geometry.

T_d	Е	8C3	3C ₂	6S ₄	$6\sigma_d$	Irreducible components
Γ_{π}	8	-1	0	0	0	$e+t_1+t_2$

Two of these aforementioned sets are of e and t_2 symmetry. The $d_x^2 - y^2$ and d_z^2 orbitals set on the metal also have e-symmetry, and therefore the π -overlap between a central atom and four ligands is possible as far as the generation of molecular orbitals with e-symmetry is concerned. Moreover, p_x , p_y , p_z and d_{xy} , d_{yz} , d_{zx} set are of t_2 symmetry, and therefore, can take part in sidewise overlap. However, the p-subshell largely engaged in σ -bonding and therefore has little or no contribution. While the transition metals show a tendency to use their d_{xy} , d_{yz} and d_{zx} orbitals for $d\pi - p\pi$ interactions in octahedral complexes, the main group elements primarily use $d_x^2 - y^2$ and d_z^2 as they generally form tetrahedral complexes. The primary reason for this selective behavior is that these two orbitals yield $\sqrt{3}$ times higher $d\pi - p\pi$ overlap than that of d_{xy} , d_{yz} and d_{zx} The general scheme for $d\pi - p\pi$ overlap for main group compounds with tetrahedral geometry is shown in 'Figure 23'.

 $d_{x^{2}-y^{2}}$ overlap with *p*-Orbitals

 d_z^2 overlap with *p*-Orbitals

Figure 23. The overlap mechanism for the $d\pi$ - $p\pi$ interactions when the central atom has valence *d*-orbitals.

Apart from the tetrahedral molecules, some less symmetrical main group compounds are also found to have $d\pi$ - $p\pi$ interactions. Although the exact nature of these interactions is quite difficult to analyze as the lowering of symmetry makes the *d*-subshell of central atom susceptible to the surrounding groups to a different extent yet the inverse variation of bond length with bond order may be used to approximate the extent of $d\pi$ $p\pi$ overlap. Quantum mechanical calculations have also shown that significant $d\pi$ - $p\pi$ interaction is present in molecules like SO₂F₂, PF₃O, ClO₃F, ClO₂⁻, ClO₃⁻.

> Molecules with Central Atom Having p-Valence Shell for Sidewise Overlap

Sometimes, the existence of $d\pi$ – $p\pi$ bonding can be viewed in terms of the molecular geometry. For example, Si₃N and Ge₃N skeleton is planar in (H₃Si)₃N, (H₃Ge)₃N and Si/Ge–N bond length is somewhat shorter that what is expected for a single bond. This can be explained by assuming that the electron density from N($2p_z$) is overlapping with the 3*d* orbitals of surrounding Si and Ge.

The reducible representation based on the *s*, *p* and *d* orbitals of the central atom in trigonal planar geometry is:

	1.0010.0			a oli s, p ulla u		
D_{3h}	Е	2C ₃	3C ₂	$\sigma_{\rm h}$	$2S_3$	$3\sigma_v$
Γ_{π}	9	0	1	3	0	3

Table 3. Reducible representation based on s, p and d orbitals

Resolving the reducible into irreducible components, the symmetry designations of different orbitals of the central atom taking part in trigonal planar overlap are:

S	_	a_1'
<i>p</i> _z	_	a_2''

p_x, p_y	-	<i>e</i> ′
d_z^2	_	a_1'
$d_{xy}, d_x^2 - y^2$	_	<i>e</i> ′
d_{xz}, d_{yz}	_	<i>e"</i>

The symmetry adapted linear combinations of atomic orbitals (SALCs) of surrounding groups for sidewise overlap can be obtained just by resolving the reducible representation based on the displacement vectors perpendicular to the axis of σ -overlap.

The symmetry adapted linear combinations of these fall into two singly and two doubly degenerate irreducible representations labeled as a_2' , e', a_2'' and e''. The symmetry designations of different ligand orbitals taking part in sidewise overlap in trigonal planar molecules are:

D_{3h}	Е	2C ₃	3C ₂	$\sigma_{\rm h}$	2S ₃	$3\sigma_v$	Irreducible components
Γπ	6	0	-2	0	0	0	$a_2' + e' + a_2'' + e''$

Table 4. Reducible representation based on perpendicular vectors in trigonal planar geometry.

Three of these aforementioned sets are of a_2'' , e' and e'' symmetry. The $d_{x^2-y^2}^2$ and d_{xy} orbitals set on the central atom also have e'-symmetry, while the d_{xz} and d_{yz} has e''-symmetry; therefore, the π -overlap between a central atom and the ligands is possible as far as the generation of molecular orbitals with e'- and e''-symmetry is concerned. Moreover, p_z orbital of the central atom is of a_2'' -symmetry, and therefore, can also take part in sidewise overlap. Now though the symmetry allows the central atom to use $d_x^2 - y^2$, d_{xy} , d_{xz} , d_{yz} and p_z ; the overlap extent and energy criteria permits largely the p_z to do sidewise overlap.

However, the presence of partially filled p_z orbital of the central atom is prone to overlap with the empty *d*-subshell of surrounding groups yet it does not assure the sufficient $d\pi$ – $p\pi$ bonding leading to a planar structure in all cases. The Si–A–Si bond angles in P(SiH₃)₃ and As(SiH₃)₃ are 96.5° and 93.8° respectively and both of these compounds exist as pyramidal geometry like P(GeH₃)₃ does. This is due to the fact that $3p_z$ orbitals of P and As do not overlap with *d*-orbitals as efficiently as in the case of $2p_z$ orbital of N atom. Furthermore, S(SiH₃)₂ is bent with a Si–A–Si bond angle of 98° resembling its tri-coordinated pyramidal analogs in terms of $d\pi$ – $p\pi$ overlap. However, (H₃Si)₂O is also bent in geometry with a bond angle of 144° but shows a small extant of $d\pi$ – $p\pi$ overlap which is also confirmed by the shortening of the Si–O bond length. The extant of $d\pi$ – $p\pi$ overlap is much larger in flat and linear geometries than that of bent ones.

 p_z overlap with *d*-Orbitals in linear molecules

 p_z overlap with *d*-Orbitals in bent molecules

Figure 26. The overlap mechanism for $d\pi$ - $p\pi$ interactions when the central atom has valence *p*-orbitals.

LEGAL NOTICE

This document is an excerpt from the book entitled "A Textbook of Inorganic Chemistry – Volume 1 by Mandeep Dalal", and is the intellectual property of the Author/Publisher. The content of this document is protected by international copyright law and is valid only for the personal preview of the user who has originally downloaded it from the publisher's website (www.dalalinstitute.com). Any act of copying (including plagiarizing its language) or sharing this document will result in severe civil and criminal prosecution to the maximum extent possible under law.

This is a low resolution version only for preview purpose. If you want to read the full book, please consider buying.

Buy the complete book with TOC navigation, high resolution images and no watermark.

Home: https://www.dalalinstitute.com/ Classes: https://www.dalalinstitute.com/classes/ Books: https://www.dalalinstitute.com/books/ Videos: https://www.dalalinstitute.com/videos/ Location: https://www.dalalinstitute.com/location/ Contact Us: https://www.dalalinstitute.com/contact-us/ About Us: https://www.dalalinstitute.com/about-us/

Postgraduate	Level Classes	Undergraduate Level Classes		
(NET-JRF &	(IIT-GATE)	(M.Sc Entrance & IIT-JAM)		
Adm	ission	Adm	ission	
Regular Program Test Series	Distance Learning Result	Regular Program Test Series	Distance Learning Result	

A Textbook of Inorganic Chemistry - Volume 1

"A Textbook of Inorganic Chemistry – Volume 1 by Mandeep Dalal" is now available globally; including India, America and most of the European continent. Please ask at your local bookshop or get it online here. READ MORE

Join the revolution by becoming a part of our community and get all of the member benefits like downloading any PDF document for your personal preview.

Sign Up

A TEXTBOOK OF INORGANIC CHEMISTRY Volume I

MANDEEP DALAL

First Edition

DALAL INSTITUTE

Table of Contents

CHAP	ГЕR 1	11
Stere	cochemistry and Bonding in Main Group Compounds:	11
*	VSEPR Theory	11
*	$d\pi$ – $p\pi$ Bonds	23
*	Bent Rule and Energetic of Hybridization	28
*	Problems	42
*	Bibliography	43
СНАР	ΓER 2	44
Meta	I-Ligand Equilibria in Solution:	44
*	Stepwise and Overall Formation Constants and Their Interactions	44
*	Trends in Stepwise Constants	46
*	Factors Affecting Stability of Metal Complexes with Reference to the Nature of Metal Ion Ligand	and 49
*	Chelate Effect and Its Thermodynamic Origin	56
*	Determination of Binary Formation Constants by pH-metry and Spectrophotometry	63
*	Problems	68
*	Bibliography	69
СНАР	ΓER 3	70
Reac	tion Mechanism of Transition Metal Complexes – I:	70
*	Inert and Labile Complexes	70
*	Mechanisms for Ligand Replacement Reactions	77
*	Formation of Complexes from Aquo Ions	82
*	Ligand Displacement Reactions in Octahedral Complexes- Acid Hydrolysis, Base Hydrolysis.	86
*	Racemization of Tris Chelate Complexes	89
*	Electrophilic Attack on Ligands	92
*	Problems	94
*	Bibliography	95

CHAP	TER 4	96
Reac	tion Mechanism of Transition Metal Complexes – II:	
*	Mechanism of Ligand Displacement Reactions in Square Planar Complexes	
*	The Trans Effect	
*	Theories of Trans Effect	103
*	Mechanism of Electron Transfer Reactions – Types; Outer Sphere Electron Transfer I Inner Sphere Electron Transfer Mechanism	Mechanism and
*	Electron Exchange	117
*	Problems	121
*	Bibliography	122
CHAP	TER 5	
Isopo	oly and Heteropoly Acids and Salts:	123
*	Isopoly and Heteropoly Acids and Salts of Mo and W: Structures of Isopoly a Anions	and Heteropoly 123
*	Problems	
*	Bibliography	
CHAP	TER 6	154
Crys	tal Structures:	
*	Structures of Some Binary and Ternary Compounds Such as Fluorite, Antifluorite, Ru Crystobalite, Layer Lattices - CdI ₂ , BiI ₃ ; ReO ₃ , Mn ₂ O ₃ , Corundum, Pervoskite, Iln Calcite	itile, Antirutile, nenite and 154
*	Problems	
*	Bibliography	
СНАР	TER 7	
Meta	Il-Ligand Bonding:	
*	Limitation of Crystal Field Theory	
*	Molecular Orbital Theory – Octahedral, Tetrahedral or Square Planar Complexes	
*	π -Bonding and Molecular Orbital Theory	198
*	Problems	
*	Bibliography	

CHAP	ГЕR 8	214
Elect	ronic Spectra of Transition Metal Complexes:	214
*	Spectroscopic Ground States	214
*	Correlation and Spin-Orbit Coupling in Free Ions for 1st Series of Transition Metals	243
*	Orgel and Tanabe-Sugano Diagrams for Transition Metal Complexes $(d^1 - d^9)$ States)	248
*	Calculation of Dq, B and β Parameters	280
*	Effect of Distortion on the <i>d</i> -Orbital Energy Levels	300
*	Structural Evidence from Electronic Spectrum	307
*	Jahn-Tellar Effect	312
*	Spectrochemical and Nephelauxetic Series	324
*	Charge Transfer Spectra	328
*	Electronic Spectra of Molecular Addition Compounds	336
*	Problems	340
*	Bibliography	341
CHAP	ГЕ R 9	342
Mag	netic Properties of Transition Metal Complexes:	342
*	Elementary Theory of Magneto-Chemistry	342
*	Guoy's Method for Determination of Magnetic Susceptibility	351
*	Calculation of Magnetic Moments	354
*	Magnetic Properties of Free Ions	359
*	Orbital Contribution: Effect of Ligand-Field	362
*	Application of Magneto-Chemistry in Structure Determination	370
*	Magnetic Exchange Coupling and Spin State Cross Over	375
*	Problems	384
*	Bibliography	385
CHAP	ГЕR 10	386
Meta	l Clusters:	386
*	Structure and Bonding in Higher Boranes	386
*	Wade's Rules	401

*	Carboranes	407
*	Metal Carbonyl Clusters- Low Nuclearity Carbonyl Clusters	412
*	Total Electron Count (TEC)	417
*	Problems	
*	Bibliography	
СНАР	PTER 11	
Met	al-П Complexes:	426
*	Metal Carbonyls: Structure and Bonding	426
*	Vibrational Spectra of Metal Carbonyls for Bonding and Structure Elucidation	439
*	Important Reactions of Metal Carbonyls	446
*	Preparation, Bonding, Structure and Important Reactions of Transition Metal Nitros and Dioxygen Complexes	syl, Dinitrogen 450
*	Tertiary Phosphine as Ligand	
*	Problems	
*	Bibliography	
INDE	X	

Mandeep Dalal (M.Sc, Ph.D, CSIR UGC - NET JRF, IIT - GATE) Founder & Director, Dalal Institute Contact No: +91-9802825820 Homepage: www.mandeepdalal.com E-Mail: dr.mandeep.dalal@gmail.com

Mandeep Dalal is an Indian research scholar who is primarily working in the field of Science and Philosophy. He received his Ph.D in Chemistry from Maharshi Dayanand University, Rohtak, in 2018. He is also the Founder and Director of "Dalal Institute", an India-based educational organization which is trying to revolutionize the mode of higher education in Chemistry across the globe. He has published more than 40 research papers in various international scientific journals, including mostly from Elsevier (USA), IOP (UK) and Springer (Netherlands).

Other Books by the Author A TEXTBOOK OF INORGANIC CHEMISTRY - VOLUME I. II. III. IV A TEXTBOOK OF PHYSICAL CHEMISTRY - VOLUME I. II. III. IV A TEXTBOOK OF ORGANIC CHEMISTRY - VOLUME I. II. III. IV

Main Market, Sector 14, Rohtak, Haryana 124001, India (+91-9802825820, info@dalalinstitute.com) www.dalalinstitute.com