* π-Bonding and Molecular Orbital Theory

We have already studied the metal-ligand σ -overlap in the framework of molecular orbitals theory. Furthermore, this theory is also very useful for providing a rational explanation for the π -bonding in different metal-complex geometries. The basic approach remains the same except the fact that the orbital overlap in this situation is not along the internuclear axis but is sidewise in nature. The symmetry criteria governing these overlaps are absolutely clear but the extant up to which the overlap for different ligands takes place is still a matter of debate. In other words, the matching of metal and ligands orbital symmetry is not sufficient to assure the formation of π -bond as there are also some other factors (like size and energy) that signify the extent of overlap. It is quite possible that two orbital sets with the same symmetry may not be able to form molecular orbital due to a large difference in their energies.

There are four different types of metal-ligand interaction which can be resulted from the sidewise overlap of the orbitals.

Figure 15. The sidewise overlap (π -bonding) of the *d*-orbital metal with different types of ligands orbital (a) d_{π} - p_{π} , (b) d_{π} - d_{π} , (c) d_{π} - π^* , (d) d_{π} - σ^* .

Electron density can be transferred from filled ligand orbital to the empty d-orbital of the metal center, or from the filled d-orbital of the metal to the empty orbital of the ligand.

Туре	Explanation	Examples of the ligands involved
d_{π} - p_{π}	Transfer of electron density from filled <i>p</i> - orbital of the ligand to the empty <i>d</i> -orbital of the metal.	RS ⁻ , RO ⁻ , O ²⁻ , F ⁻ , Cl ⁻ , Br ⁻ , I ⁻ , R ₂ N ⁻
d_{π} - d_{π}	Transfer of electron density from filled <i>d</i> -orbital of the metal to the empty <i>d</i> -orbital of the ligand.	R_2S , R_3P , R_3As
$d_{\pi} extsf{-}\pi^{*}$	Transfer of electron density from filled <i>d</i> - orbital of the metal to the empty π^* -orbital of the ligand.	CN⁻, CO, RNC, N₂, NO₂, ethylene, pyridine
d_{π} - σ^{*}	Transfer of electron density from filled d - orbital of the metal to the empty σ^* -orbital of the ligand.	R ₃ P, H ₂ , alkanes

Table 4. Different types of π -bonding and the compatibility of various ligands.

DAI AI INSTITUTE

It can be seen from the above table that some ligands belong to more than one category and hence can use more than one type orbitals for π -bonding. However, it is observed that the contribution from one type of orbitals dominates the other in many cases. For instance, R₃P can accept *d*-electron density from metal in its empty *d*-orbital, or in the antibonding σ^* which is also greater in magnitude. Similarly, I⁻ also has the ability to donate electron from its filled *p*-orbital, or to accept electron density in its low lying empty *d*-orbitals.

The generally accepted explanation for the π -bonding in transition metal complexes of different geometry can be given as:

> π -Bonding in Octahedral Complexes

The π -bonding in octahedral complexes can happen in two ways; one through ligand *p*-orbitals that are not being used in σ bonding and other via π or π^* molecular orbitals present on the ligand. The symmetry designations of different metal orbitals taking part in octahedral overlap are:

$d_z^2, d_x^2 - y^2$	_	e_g
S	-	a_{1g}
p_x, p_y, p_z	-	t_{1u}
d_{xy}, d_{xz}, d_{yz}	_	t_{2g}

The symmetry adapted linear combinations of atomic orbitals (SALCs) for metal-ligand sidewise overlap can be obtained just by resolving the reducible representation based on the displacement vectors

perpendicular to the axis of σ overlap. As each of the six ligands has two basis-vectors for π -symmetry, there are twelve in total.

Figure 16. The π -basis set for ligand orbitals in octahedral complexes.

The symmetry adapted linear combinations of these fall into four triply degenerate irreducible representations labeled as t_{1g} , t_{2g} , t_{1u} and t_{2u} . The symmetry designations of different metal orbitals taking part in octahedral overlap are:

Table 5. Reducible representation based on perpendicular vectors in the octahedral geometry.

				www.natatinstitue.com	
O_h	Е	8C ₃	6C ₂	$6C_4$ $3C_2$ i $6S_4$ $8S_6$ $3\sigma_h$ $6\sigma_d$	Irreducible
				SINCE 2012	components
Γ_{π}	12	0	0		$t_{1g} + t_{2g} + t_{1u} + t_{2u}$

Two of these aforementioned sets are of t_{2g} and t_{1u} symmetry. The d_{xy} , d_{xz} and d_{yz} orbitals set on the metal also have t_{2g} symmetry, and therefore the π -bonds formed between a central metal and six ligands also have it as these π -bonds are just formed by the overlap of two sets of orbitals with t_{2g} symmetry. Similarly, the p_x , p_y and p_z -orbital set of the metal has t_{1u} symmetry which resembles with the symmetry of ligands SALCs. Therefore, these same-symmetry (t_{1u}) sets from metal and ligand may also interact to create bonding and antibonding molecular orbitals. However, the participation of t_{1u} set of the metal in π -overlap is highly disliked because the orbitals corresponding to this set are already being used in stronger σ -bonding and any deviation from this state is bound to destabilize the complex.

Hence, the SALC sets of t_{1g} , t_{2u} and also t_{1u} remain nonbonding. The pictorial representation of different SALC-orbitals in octahedral complexes, capable of π -overlap with metal orbitals, can be given as:

1. If four perpendicular *p*-orbitals of four ligands approaching along *x* and *y*-axis are pointing their lobes towards metal's d_{xy} -orbital in a sidewise manner, then the composite orbital becomes:

$$\varphi_1 = \pi_1 - \pi_2 + \pi_3 - \pi_4 \tag{7}$$

The pictorial representation is given below.

Figure 18. The combination of ligand orbitals overlapping with d_{yz} -orbital of the metal center.

3. If four perpendicular *p*-orbitals of four ligands approaching along *x* and *z*-axis are pointing their lobes towards metal's d_{xz} -orbital in a sidewise manner, then the composite orbital becomes:

$$\varphi_3 = \pi_1 - \pi_2 + \pi_5 - \pi_6 \tag{9}$$

The pictorial representation is given below.

Figure 19. The combination of ligand orbitals overlapping with d_{xz} -orbital of the metal center.

CHEMISTRY \

Molecular orbitals and the effect of π -bonding on crystal field splitting can be categorized in three ways as follows:

1. When ligand π -orbitals are filled and are of lower energy: The one form of coordinative π -bonding is ligand-to-metal bonding. This situation arises when the t_{2g} -symmetry p or π -orbitals on the ligands are filled and are low in energy. They combine with the d_{xy} , d_{xz} and d_{yz} orbitals on the metal and donate electrons to the resulting π -symmetry bonding orbital between them and the metal.

The metal-ligand bond is somewhat strengthened by this interaction, but the complementary antibonding molecular orbital from metal-ligand overlap is not higher in energy than the antibonding molecular orbital from the σ -bonding. The molecular orbital of t_{2g}^* are greater in energy than nonbonding sets of t_{1g} , t_{2u} and t_{1u} . On the other hand, the bonding molecular orbitals of t_{2g} are lower in energy than that of nonbonding SALCs of the ligands.

Therefore, when 36 electrons (12×2 from π -bonding and 6×2 from σ -bonding) from ligands are filled in the molecular orbitals, they will completely saturate the a_{1g} -bonding, t_{1u} -bonding, e_g -bonding, t_{2g} -bonding and the nonbonding sets of t_{1g} , t_{2u} and t_{1u} . The electron previously filled in *d*-orbital of the free metal ion can now be considered as distributed between t_{2g}^* and e_g^* . Hence, the crystal field splitting Δ_o decreases when ligand to metal bonding takes place.

The overall molecular orbital energy level diagram for this type of π -bonding in octahedral complexes can be shown as:

Molecular Orbitals

Ligand Orbitals

Figure 20. The generation of π and σ -molecular orbitals in octahedral complexes.

2. When ligand π -orbitals are empty and are of higher energy: The second important form of π -bonding in coordination complexes is metal-to-ligand π bonding, also called π -backbonding. It occurs when the LUMOs (lowest unoccupied molecular orbitals) of the ligand are anti-bonding π^* -orbitals and are high in energy. The ligands end up with electrons in their π^* molecular orbital, so the corresponding π -bond within the ligand

weakens. The complementary anti-bonding molecular orbital from metal-ligand overlap is higher in energy than both, the first antibonding molecular orbital from the σ -bonding (e_g^*), and the nonbonding sets of t_{1g} , t_{2u} and t_{1u} . On the other hand, the bonding molecular orbitals of t_{2g} are higher in energy than all σ bonding molecular orbitals. The overall molecular orbital energy level diagram for this type of π -bonding in octahedral complexes can be shown as:

Metal Orbitals

Molecular Orbitals

Ligand Orbitals

Therefore, when twelve electrons (12×0 from π -bonding and 6×2 from σ -bonding) from ligands are filled in the molecular orbitals, they will completely saturate the a_{1g} -bonding, t_{1u} -bonding and e_g -bonding. The electron previously filled in *d*-orbital of the free metal ion can now be considered as distributed between t_{2g} and e_g^* . Hence, the crystal field splitting Δ_0 increases and the bond between the ligand and the metal strengthens when metal to ligand bonding takes place.

3. When ligand π **-orbitals are empty as well as filled:** There are many ligands, like Γ , which have both filled *p*-orbitals as well as vacant d-orbitals of π symmetry. In these cases, the prediction of crystal field splitting energy is quite difficult as the two effects counterbalance each other to different extents for different ligands. The six bonding MOs which are formed are actually filled by the electrons coming from the ligands, and electrons from the *d*-orbitals of the metal ion occupy the nonbonding and, sometimes, antibonding molecular orbitals. The energy difference between the latter two types of MOs is called Δ_0 and is determined by the nature of the π -interaction between the ligand orbitals with the *d*-orbitals on the central atom. As described above, π -donor ligands lead to a small Δ_0 and are called weak- or low-field ligands, whereas π -acceptor ligands lead to a large value of Δ_0 and are called strong or high-field ligands. Ligands that are neither π -donor nor π -acceptor give a value of Δ_0 somewhere in-between.

The magnitude of Δ_0 determines the electronic structure of $d^4 \cdot d^7$ metal ions., The nonbonding and antibonding MOs in types of metals complexes can be filled in two ways; the first one in which maximum possible electrons are put in the nonbonding orbitals before the antibonding filling, and second one in which maximum possible unpaired electrons are put in. The first case is labeled as low-spin, while the second is labeled as high-spin complexes. A small Δ_0 can be outranked by the energetic stabilization from avoiding the electron pairing, leading to the spin-free case. On the other hand, if Δ_0 is large, the spin-pairing energy would become negligible in comparison and a spin-paired state arises. An empirically-obtained list of various ligands which are arranged by the magnitude of splitting Δ they produce is called as the spectrochemical series. It can be seen that the low-field ligands are all π -donors (such as Γ), the high field ligands are π -acceptors (such as CN⁻ and CO), and ligands such as H₂O and NH₃, which are neither, are in the middle.

 $I^- < Br^- < S^{2-} < SCN^- < CI^- < NO^3 - < N^3 - < F^- < OH^- < C_2O_4{}^{2-} < H_2O < NCS^- < CH_3CN < py (pyridine) < NH_3 < en (ethylenediamine) < bipy (2,2'-bipyridine) < phen (1,10-phenanthroline) < NO_2^- < PPh_3 < CN^- < CO$

It is also worthy to note that the electrons transfer from metal *d*-orbital to the antibonding molecular orbitals of carbonyl and its analogs is actually partial in nature. The electron-transfer increases metal-carbon bond strength but weakens the carbon–oxygen bond. The increased M–CO bond strength is obvious in the increases of vibrational frequencies for the metal–carbon bond and usually lie outside the range of normal IR spectrophotometers. Moreover, the bond length of M–CO bond is also shortened. The decreased bond strength of C–O bond is obvious from the decreasing wavenumber of v_{CO} bands. The high stabilization which results from metal-to-ligand bonding (back-bonding) is caused by the relaxation of the negative charge from the metal center. This permits the metal ion to accept the σ -donation more effectively. The combination of ligand-to-metal σ -bonding and metal-to-ligand π -bonding is a synergic effect, as each enhances the other.

> π -Bonding in Tetrahedral Complexes

The π -bonding in tetrahedral complexes can happen in two ways; one through ligand *p*-orbitals that are not being used in σ bonding and other via π or π^* molecular orbitals present on the ligand. The symmetry designations of different metal orbitals taking part in tetrahedral overlap are:

S	-	a_1
p_x, p_y, p_z	_	t_2
d_{xy}, d_{xz}, d_{yz}	_	t_2
$d_z^2, d_x^2 - y^2$	_	е

The symmetry adapted linear combinations of atomic orbitals (SALCs) for metal-ligand sidewise overlap can be obtained just by resolving the reducible representation based on the displacement vectors perpendicular to the axis of σ overlap. As each of the four ligands has two basis-vectors for π -symmetry, there are eight in total. Each pair of perpendicular vectors (p_x and p_y) is attached about its own *z*-axis so that all the *y*-vectors are parallel to the *xy*-plane of the tetrahedral complex.

Figure 22. The π -basis set for ligand orbitals in tetrahedral complexes.

The symmetry adapted linear combinations of these fall into two doubly and on singly degenerate irreducible representations labeled as e, t_1 and t_2 . The symmetry designations of different ligand orbitals taking part in tetrahedral overlap are:

T _d	Е	8C ₃	3C ₂	6S ₄	$6\sigma_d$	Irreducible components
Γ_{π}	8	-1	0	0	0	$e + t_1 + t_2$

Table 6. Reducible representation based on perpendicular vectors in the tetrahedral geometry.

Two of these aforementioned sets are of *e* and t_2 symmetry. The $d_x^2 - y^2$ and d_z^2 orbitals set on the metal also have *e*-symmetry, and therefore the π -overlap between a central metal and four ligands is possible as far as the generation of molecular orbitals with *e*-symmetry is concerned.

Similarly, the p_x , p_y and p_z -orbital set of the metal has t_2 symmetry which resembles with the symmetry of one of SALCs set on ligands. Therefore, these same-symmetry (t_2) sets from metal and ligand may also interact to create bonding and antibonding molecular orbitals. However, the π -overlap in tetrahedral complexes is not independent of the σ -bonding because the ligand SALCs and metals atomic orbital, of both types of *e* and t_2 symmetry, participate in σ as well as π -bonding.

Hence, when twenty-four electrons (8×2 from π -bonding and 4×2 from σ -bonding) from ligands are filled in the molecular orbitals, they will completely saturate the $a_1(\sigma)$, $t_2(\sigma)$, $t_2(\pi)$, $e(\pi)$ and $t_1(\pi \text{ nb})$. The electron previously filled in *d*-orbital of the free metal ion can now be considered as distributed in $e^*(\pi^*)$ and $t_2^*(\sigma^*, \pi^*)$ which are predominantly $d_{x^2-y^2}^2 = d_z^2$ and $d_{xz} = d_{yz} = d_{xy}$ in character, respectively.

Therefore, the pattern of crystal field splitting energy, provided by the molecular orbital theory, is the same as that of what it was given by crystal field theory. Moreover, the ligand to metal charge transfer spectral band can be considered as a result of the transition of an electron from nonbonding or bonding molecular orbitals to the antibonding molecular orbitals. These charge transfer peaks are very high in intensity they are spin as well as Laporte allowed in nature.

Tetrahedral complexes are almost always high-spin in nature because the energy separation between $e^*(\pi^*)$ and $t_2^*(\sigma^*, \pi^*)$ energy levels, Δ_t , is very small. That's why, during the filling of metal *d*-electrons, the promotion of electrons is always preferred over pairing. This is the same result as provided by the application of crystal field theory.

Figure 23. The crystal field splitting of *d*-subshell in tetrahedral complexes.

The overall molecular orbital energy level diagram for this type of π -bonding in tetrahedral complexes can be shown as:

Metal Orbitals

Molecular Orbitals

Ligand Orbitals

Figure 23. The generation of π and σ -molecular orbitals in four-coordinated tetrahedral complexes of transition metals.

\succ *π*-Bonding in Square Planar Complexes

The π -bonding in square planar complexes can be visualized in terms of the sidewise overlap of different kinds of orbitals on metal and ligands, having comparable energy and proper symmetry. The symmetry designations of different metal orbitals taking part in square-planar overlap are:

The symmetry adapted linear combinations of ligand atomic orbitals (SALCs) for metal-ligand sidewise overlap in square planar complexes can be obtained just by resolving the reducible representation based on the displacement vectors perpendicular to the axis of σ -overlap. As each of the four ligands has two basis-vectors for π -symmetry, there are eight in total.

The symmetry adapted linear combinations of these fall into six irreducible representations labeled as a_{2g} , b_{2u} , e_u , a_{2u} , e_g and b_{2g} . The symmetry designations of different ligand SALC-orbitals taking part in square-planar overlap are:

 Table 7. The complete reducible representation based on perpendicular vectors (usable in sidewise overlap) in square planar geometry.

D_{4h}	Е	2C ₄	C ₂	2C ₂ '	2C ₂ "	i	$2S_4$	$\sigma_{\rm h}$	$2\sigma_v$	$2\sigma_d$	Irreducible components
Γ_{π}	8	0	0	_4	0	0	0	0	0	0	$a_{2g}+b_{2u}+e_u+e_g+b_{2g}+a_{2u}.$

Two of these aforementioned sets, with a_{2g} and b_{2u} symmetry, remain nonbonding and are localized on the ligands. This is quite logical because there are no metal orbitals with these symmetry properties and hence no orbital overlap is possible.

The metal orbitals of e_{μ} -symmetry take part in σ as well as π -bonding. Now, as there are two sets of SLACs with e_{u} -symmetry, the number of molecular orbital sets formed with e_{u} -symmetry is also three. The lowest energy molecular orbitals set of e_{u} -symmetry is primarily of σ -bonding while the higher energy molecular orbitals set is mainly π -bonding in nature. The highest doubly degenerate molecular orbitals set of e_{u} -symmetry is of both σ^{*} and π^{*} -antibonding character.

The d_{yz} and d_{xz} orbitals set on the metal has e_g -symmetry, which resembles with the symmetry of one of SALCs set on ligands. Therefore, these same-symmetry (e_g) sets from metal and ligand also interact to create bonding and antibonding molecular orbitals. Furthermore, the b_{2g} -symmetry d_{xy} orbital and a_{2u} -symmetry p_z orbitals on the metal interacts with b_{2g} -symmetry and a_{2u} -symmetry SALC, respectively, to produce π -bonding and antibonding molecular orbitals.

Hence, when twenty-four electrons (8×2 from π -bonding and 4×2 from σ -bonding) from ligands are filled in the molecular orbitals, they will completely saturate the $a_{1g}(\sigma)$, $b_{1g}(\sigma)$, $e_u(\sigma)$, $b_{2g}(\pi)$, $e_g(\pi)$, $a_{2u}(\pi)$, $e_u(\pi)$, $a_{2g}(\pi \text{ nb})$ and $b_{2u}(\pi \text{ nb})$. The electron previously filled in *d*-orbital of the free metal ion can now be considered as distributed in $e_g^*(\pi^*)$, $a_{1g}(\sigma^*)$, $b_{2g}^*(\pi^*)$ and $b_{1g}^*(\sigma^*)$ which are predominantly $d_{xz}=d_{yz}$, d_z^2 , d_{xy} and $d_x^2 - y^2$ in character, respectively. Hence, the pattern of crystal field splitting energy, provided by the molecular orbital theory, is the same as that of what it was given by crystal field theory. In other words, the formal electronic configuration of tetrahedral metal complexes is the same from both theories.

Moreover, the ligand to metal charge transfer spectral band can be considered as a result of the transition of an electron from nonbonding or bonding molecular orbitals to b_{1g}^* (σ^*). These charge transfer peaks are pretty high in intensity due to their spin and Laporte allowance.

The overall molecular orbital energy level diagram for the π -bonding in square-planar complexes can be shown as:

Figure 25. The generation of π and σ -molecular orbitals in square-planar complexes.

LEGAL NOTICE

This document is an excerpt from the book entitled "A Textbook of Inorganic Chemistry – Volume 1 by Mandeep Dalal", and is the intellectual property of the Author/Publisher. The content of this document is protected by international copyright law and is valid only for the personal preview of the user who has originally downloaded it from the publisher's website (www.dalalinstitute.com). Any act of copying (including plagiarizing its language) or sharing this document will result in severe civil and criminal prosecution to the maximum extent possible under law.

This is a low resolution version only for preview purpose. If you want to read the full book, please consider buying.

Buy the complete book with TOC navigation, high resolution images and no watermark.

Home: https://www.dalalinstitute.com/ Classes: https://www.dalalinstitute.com/classes/ Books: https://www.dalalinstitute.com/books/ Videos: https://www.dalalinstitute.com/videos/ Location: https://www.dalalinstitute.com/location/ Contact Us: https://www.dalalinstitute.com/contact-us/ About Us: https://www.dalalinstitute.com/about-us/

Postgraduate	e Level Classes	Undergraduate Level Classes			
(NET-JRF 8	x IIT-GATE)	(M.Sc Entrance & IIT-JAM)			
Adm	ission	Admission			
Regular Program	Distance Learning	Regular Program	Distance Learning		
Test Series	Result	Test Series	Result		

A Textbook of Inorganic Chemistry - Volume 1

"A Textbook of Inorganic Chemistry – Volume 1 by Mandeep Dalal" is now available globally; including India, America and most of the European continent. Please ask at your local bookshop or get it online here. READ MORE

Join the revolution by becoming a part of our community and get all of the member benefits like downloading any PDF document for your personal preview.

Sign Up

A TEXTBOOK OF INORGANIC CHEMISTRY Volume I

MANDEEP DALAL

First Edition

DALAL INSTITUTE

Table of Contents

CHAP	ГЕR 1	.11
Stere	ochemistry and Bonding in Main Group Compounds:	. 11
*	VSEPR Theory	. 11
*	$d\pi$ – $p\pi$ Bonds	23
*	Bent Rule and Energetic of Hybridization	. 28
*	Problems	. 42
*	Bibliography	. 43
CHAP	ΓER 2	.44
Meta	I-Ligand Equilibria in Solution:	. 44
*	Stepwise and Overall Formation Constants and Their Interactions	. 44
*	Trends in Stepwise Constants	. 46
*	Factors Affecting Stability of Metal Complexes with Reference to the Nature of Metal Ion Ligand	and 49
*	Chelate Effect and Its Thermodynamic Origin	. 56
*	Determination of Binary Formation Constants by pH-metry and Spectrophotometry	. 63
*	Problems	. 68
*	Bibliography	. 69
CHAP	ΓER 3	.70
Reac	tion Mechanism of Transition Metal Complexes – I:	. 70
*	Inert and Labile Complexes	. 70
*	Mechanisms for Ligand Replacement Reactions	. 77
*	Formation of Complexes from Aquo Ions	. 82
*	Ligand Displacement Reactions in Octahedral Complexes- Acid Hydrolysis, Base Hydrolysis	86
*	Racemization of Tris Chelate Complexes	. 89
*	Electrophilic Attack on Ligands	. 92
*	Problems	. 94
*	Bibliography	. 95

CHAP	TER 4	96
Reac	tion Mechanism of Transition Metal Complexes – II:	
*	Mechanism of Ligand Displacement Reactions in Square Planar Complexes	
*	The Trans Effect	
*	Theories of Trans Effect	103
*	Mechanism of Electron Transfer Reactions – Types; Outer Sphere Electron Transfer I Inner Sphere Electron Transfer Mechanism	Mechanism and
*	Electron Exchange	
*	Problems	121
*	Bibliography	122
CHAP	TER 5	
Isopo	oly and Heteropoly Acids and Salts:	123
*	Isopoly and Heteropoly Acids and Salts of Mo and W: Structures of Isopoly a Anions	and Heteropoly 123
*	Problems	
*	Bibliography	
CHAP'	TER 6	
Crys	tal Structures:	
*	Structures of Some Binary and Ternary Compounds Such as Fluorite, Antifluorite, Ru Crystobalite, Layer Lattices - CdI ₂ , BiI ₃ ; ReO ₃ , Mn ₂ O ₃ , Corundum, Pervoskite, Ilr Calcite	ntile, Antirutile, nenite and 154
*	Problems	
*	Bibliography	179
СНАР	TER 7	
Meta	Il-Ligand Bonding:	180
*	Limitation of Crystal Field Theory	
*	Molecular Orbital Theory – Octahedral, Tetrahedral or Square Planar Complexes	
*	π -Bonding and Molecular Orbital Theory	198
*	Problems	
*	Bibliography	

CHAP	ΓER 8	214
Elect	ronic Spectra of Transition Metal Complexes:	214
*	Spectroscopic Ground States	214
*	Correlation and Spin-Orbit Coupling in Free Ions for 1st Series of Transition Metals	243
*	Orgel and Tanabe-Sugano Diagrams for Transition Metal Complexes $(d^1 - d^9$ States)	248
*	Calculation of Dq, B and β Parameters	280
*	Effect of Distortion on the <i>d</i> -Orbital Energy Levels	300
*	Structural Evidence from Electronic Spectrum	307
*	Jahn-Tellar Effect	312
*	Spectrochemical and Nephelauxetic Series	324
*	Charge Transfer Spectra	328
*	Electronic Spectra of Molecular Addition Compounds	336
*	Problems	340
*	Bibliography	341
CHAP	ГЕ R 9	342
Mag	netic Properties of Transition Metal Complexes:	342
*	Elementary Theory of Magneto-Chemistry	342
*	Guoy's Method for Determination of Magnetic Susceptibility	351
*	Calculation of Magnetic Moments	354
*	Magnetic Properties of Free Ions	359
*	Orbital Contribution: Effect of Ligand-Field	362
*	Application of Magneto-Chemistry in Structure Determination	370
*	Magnetic Exchange Coupling and Spin State Cross Over	375
*	Problems	384
*	Bibliography	385
CHAP	ГЕR 10	386
Meta	l Clusters:	386
*	Structure and Bonding in Higher Boranes	386
*	Wade's Rules	401

*	Carboranes	407
*	Metal Carbonyl Clusters- Low Nuclearity Carbonyl Clusters	412
*	Total Electron Count (TEC)	417
*	Problems	
*	Bibliography	
СНАЕ	PTER 11	
Met	al-П Complexes:	426
*	Metal Carbonyls: Structure and Bonding	426
*	Vibrational Spectra of Metal Carbonyls for Bonding and Structure Elucidation	439
*	Important Reactions of Metal Carbonyls	446
*	Preparation, Bonding, Structure and Important Reactions of Transition Metal Nitros and Dioxygen Complexes	syl, Dinitrogen 450
*	Tertiary Phosphine as Ligand	
*	Problems	
*	Bibliography	
INDE	X	

Mandeep Dalal (M.Sc, Ph.D, CSIR UGC - NET JRF, IIT - GATE) Founder & Director, Dalal Institute Contact No: +91-9802825820 Homepage: www.mandeepdalal.com E-Mail: dr.mandeep.dalal@gmail.com

Mandeep Dalal is an Indian research scholar who is primarily working in the field of Science and Philosophy. He received his Ph.D in Chemistry from Maharshi Dayanand University, Rohtak, in 2018. He is also the Founder and Director of "Dalal Institute", an India-based educational organization which is trying to revolutionize the mode of higher education in Chemistry across the globe. He has published more than 40 research papers in various international scientific journals, including mostly from Elsevier (USA), IOP (UK) and Springer (Netherlands).

Other Books by the Author A TEXTBOOK OF INORGANIC CHEMISTRY - VOLUME I. II. III. IV A TEXTBOOK OF PHYSICAL CHEMISTRY - VOLUME I. II. III. IV A TEXTBOOK OF ORGANIC CHEMISTRY - VOLUME I. II. III. IV

Main Market, Sector 14, Rohtak, Haryana 124001, India (+91-9802825820, info@dalalinstitute.com) www.dalalinstitute.com