#### \* Calculation of Dq, B and β Parameters

The Orgel diagrams explain how the magnitude of the splitting energy exerted by the ligands on *d*orbitals very when a free metal ion is approached by a ligand field; and can also act as deciding factor for governing the placement of electrons, just like the inter-electronic repulsion energy. However, if the ligand field splitting energy is greater than the inter-electronic repulsion energy, then Orgel diagrams fail in determining the placement of electrons. In that case, Orgel diagrams are restricted only to the high-spin complexes. Tanabe-Sugano diagrams do not have this restriction and can be applied to the situations when  $\Delta$ is significantly greater than inter-electronic repulsion. Thus, the Tanabe-Sugano diagrams can be utilized in determining electron placements for high-spin and low-spin metal complexes. However, they are limited in the sense that they have only qualitative significance.

Despite that, Tanabe-Sugano and Orgel diagrams are fairly valuable in interpreting UV-vis spectra and can be used to determine the value of crystal field splitting energy (Dq), Racah parameter (B) and also the nephelauxetic ratio ( $\beta$ ).

#### ➤ d<sup>1</sup> Complexes

Metal complexes with  $d^1$ -configuration do not have any inter electronic repulsion and the single electron resides in the  $t_{2g}$  orbital ground state. When  $t_{2g}$  orbital set holds the single electron, six microstates will have  ${}^2T_{2g}$  state energy of -4 Dq; and when the electron is promoted to the  $e_g$  orbital, the four microstates will have  ${}^2E_g$  state energy of +6 Dq. Thus, the only parameter that is needed to be calculated is the magnitude of crystal field splitting energy (10 Dq); and the single absorption band in a UV-vis experiment is exactly what we are looking for. Hence, the energy of the transition  ${}^2T_{2g} \rightarrow {}^2E_g$  gives the value of  $\Delta$  directly.



Figure 36. The splitting pattern of free ion term for  $d^1$  complexes in the octahedral crystal field.



Consider the example of [Ti(H<sub>2</sub>O)<sub>6</sub>]<sup>3+</sup>

1. Calculation of B: No need to calculate the Racah parameter.

**2.** Calculation of  $\Delta_0$ : The purple color of the complex ion  $[Ti(H_2O)_6]^{3+}$  is due to a broad absorption band at 20300 cm<sup>-1</sup> arising from  ${}^{2}T_{2g} \rightarrow {}^{2}E_{g}$  transition. Hence, 10 Dq for this complex is 20300 cm<sup>-1</sup>.

**3.** Calculation of  $\beta$ : No need to calculate the nephelauxetic ratio.

#### > d<sup>9</sup> Complexes:

In  $d^9$  octahedral metal complexes, the ground state filling of electrons  $(t_{2g}^6 e_g^3)$  has only four microstates that have  ${}^2E_g$  energy state with -6 Dq. When the electron from  $t_{2g}$  is promoted to the  $e_g$  orbital set; the new configuration will have six microstates that have  ${}^2T_{2g}$  energy state with +4 Dq. This could also be described as a positive "hole" that moves from the  $e_g$  to the  $t_{2g}$  orbital set. The sign of Dq is opposite that for  $d^1$ , with a  ${}^2E_g$  ground state and a  ${}^2T_{2g}$  excited state. Like the  $d^1$  case, the only parameter that is needed to be calculated in  $d^9$  complexes is the magnitude of crystal field splitting energy (10 Dq); and the single absorption band in a UV-vis experiment is exactly what we are looking for. Hence, the energy of the transition  ${}^2E_g \rightarrow {}^2T_{2g}$ gives the value of  $\Delta$  directly.



Figure 37. The splitting pattern of free ion term for  $d^9$  complexes in the octahedral crystal field.

Consider the example of  $[Cu(H_2O)_6]^{2+}$ .

1. Calculation of B: No need to calculate the Racah parameter.

**2.** Calculation of  $\Delta_0$ : In the UV-visible spectra of  $[Cu(H_2O)_6]^{2+}$ , the broad band at 12000 cm<sup>-1</sup> is due to spinallowed  ${}^2E_g \rightarrow {}^2T_{2g}$  transition; and hence, 10 Dq for this complex is 12000 cm<sup>-1</sup>.

**3.** Calculation of  $\beta$ : No need to calculate the nephelauxetic ratio.

#### $\succ$ d<sup>2</sup> Complexes

Metal complexes with  $d^2$ -configuration have <sup>3</sup>F ground state term symbol in the absence of any crystal field. However, when six ligands approach in octahedral coordination, the ground state term symbol becomes <sup>3</sup>T<sub>1g</sub> and remains as such in weak as well as in strong ligand fields. The Orgel and Tanabe-Sugano diagram for  $d^2$ -configuration can be used to estimate the value of crystal field splitting energy for these transition metal complexes.



Figure 38. The (a) Orgel and (b) Tanabe-Sugano diagrams for  $d^2$  complexes in the octahedral crystal field.

Consider the example of  $[V(H_2O)_6]^{3+}$ .

**1. Calculation of B:** From the Orgel diagram, it can be clearly seen that the ground state for  $d^2$ -octahedral complexes is  ${}^{3}T_{1g}$  and there are three main transitions before the crossover point. Moreover, it is worthy to note down that the order of second and third transitions is reversed after the crossover point and only two bands will be observed at or near the crossover point. As the magnitude of the crystal field splitting energy increases, the  ${}^{3}T_{1g}(F)$  and  ${}^{3}T_{1g}(P)$  states repel each other more and more with a magnitude of *x* energy value.

$$\nu_1 = {}^3T_{1g} \rightarrow {}^3T_{2g}$$
$$\nu_2 = {}^3T_{1g} \rightarrow {}^3A_{2g}$$
$$\nu_3 = {}^3T_{1g} \rightarrow {}^3T_{1g}(P)$$



Which gives

$$v_1 = 8 Dq + x \tag{1}$$

$$v_2 = 18 \text{ Dq} + x \tag{2}$$

$$v_3 = 15 B + 6 Dq + 2x \tag{3}$$

Adding equation (1) and (2), we get

$$v_2 + v_1 = 18 Dq + x + 8 Dq + x$$
  
 $v_2 + v_1 = 26 Dq + 2x$  (4)

Subtracting equation (1) and (2), we get



However, only two transitions are observed, this method is difficult to apply in a precise manner and only gives approximations.

From the Tanabe-Sugano diagram, in the UV-visible spectra of  $[V(H_2O)_6]^{3+}$ , two bands are observed with maxima at around 17500 and 26000 cm<sup>-1</sup>. There are three possible transitions expected, which include:  $v_1 = {}^3T_{1g} \rightarrow {}^3T_{2g}, v_2 = {}^3T_{1g} \rightarrow {}^3T_{1g}(P)$ , and  $v_3 = {}^3T_{1g} \rightarrow {}^3A_{2g}$ ; but only two are observed. The ratio of experimental band energies is:

$$\frac{\nu_2}{\nu_1} = \frac{E_2}{E_1} = \frac{E_2/B}{E_1/B} = \frac{26000}{17500} = 1.49$$



Now slide a ruler across the printed diagram (perpendicular to the abscissa) until the ratio of  $E_2/B$  to  $E_1/B$  between lines becomes equivalent to 1.49. In this particular example, this ratio becomes 1.49 when  $\Delta_0/B$  = 31. Stop the ruler movement and find out the values of  $E_2/B$  and  $E_1/B$ 

$$\frac{E_2}{B} = 43; \quad \frac{E_1}{B} = 27$$

Thus, on the T-S diagram, where  $\Delta_0/B = 31$ ; the value of  ${}^{3}T_{1g} \rightarrow {}^{3}T_{2g}$  and  ${}^{3}T_{1g} \rightarrow {}^{3}T_{1g}(P)$  i.e.  $E_1/B$  and  $E_2/B$ , are 27 and 43, respectively. The Racah parameter can be found by calculating B from both  $v_2$  and  $v_1$ .

$$\frac{26000}{B} = 43; \quad \frac{17500}{B} = 27$$
$$B = \frac{26000}{43} = 604 \text{ cm}^{-1}; \quad B = \frac{17500}{27} = 648 \text{ cm}^{-1}$$

Average value of Racah parameter (B) =  $\frac{604 + 648}{2}$  = 626 cm<sup>-1</sup>

**2. Calculation of**  $\Delta_0$ : Being a weak-complex, the theoretical value of lowest-energy absorption band given by the Orgel diagram is 8 Dq ( ${}^{3}T_{1g} \rightarrow {}^{3}T_{2g}$ ); and the experimental value for lowest-energy absorption band is 17500 cm<sup>-1</sup>. Hence, the value of 10 Dq or  $\Delta_0$  can be calculated as:

$$b_{0} = 0.8 \Delta_{o} = 17500 \text{ cm}^{-1}$$
(info@dalalinstitute.com, +91-9802825820)  

$$\Delta_{o} = \frac{17500 \text{ cm}^{-1}}{0.8}$$

$$\Delta_{o} = 10 \text{ Dq} = 21875 \text{ cm}^{-1}$$

However, this is just the approximation and a more precise and refined calculation should be carried out using the Tanabe-Sugano diagram. From the average value of the Racah parameter, the ligand field splitting parameter can be found as follows.

$$\frac{\Delta_{o}}{B} = 31;$$
  $\frac{\Delta_{o}}{626 \text{ cm}^{-1}} = 31;$   $\Delta_{o} = 19406 \text{ cm}^{-1}$ 

**3.** Calculation of  $\beta$ : In order to calculate the nephelauxetic ratio, we must have the value of Racah parameter for a free metal ion in its gaseous state. For free  $d^2$  ion like V<sup>3+</sup>, it has been observed that <sup>3</sup>P state lies 12925 cm<sup>-1</sup> above to the <sup>3</sup>F state. Hence, 15B = 12925 cm<sup>-1</sup> or B = 862 cm<sup>-1</sup>. Now, the value of nephelauxetic ratio can be calculated as

Nephelauxetic ratio = 
$$\beta = \frac{B_{complex}}{B_{free ion}} = \frac{626 \text{ cm}^{-1}}{862 \text{ cm}^{-1}} = 0.726$$



#### ➢ d<sup>8</sup> Complexes

Metal complexes with  $d^8$ -configuration have <sup>3</sup>F ground state term symbol in the absence of any crystal field. However, when six ligands approach in octahedral coordination, the ground state term symbol becomes <sup>3</sup>A<sub>2g</sub> and remains as such in weak as well as in strong ligand fields. The Orgel and Tanabe-Sugano diagram for  $d^8$ -configuration can be used to estimate the value of crystal field splitting energy for these transition metal complexes.



Figure 39. The (a) Orgel and (b) Tanabe-Sugano diagrams for *d*<sup>8</sup> complexes in the octahedral crystal field.

Consider the example of  $[Ni(H_2O)_6]^{2+}$ .

**1. Calculation of B:** From the Orgel diagram, it can be clearly seen that the ground state for  $d^8$ -octahedral complexes is  ${}^{3}A_{2g}$  and there are three main transitions. As the magnitude of the crystal field splitting energy increases, the  ${}^{3}T_{1g}(F)$  and  ${}^{3}T_{1g}(P)$  states repel each other more and more with a magnitude of *x* energy value owing to the non-crossing rule of the same symmetry states.

$$v_1 = {}^{3}A_{2g} \rightarrow {}^{3}T_{2g}$$
$$v_2 = {}^{3}A_{2g} \rightarrow {}^{3}T_{1g}$$
$$v_3 = {}^{3}A_{2g} \rightarrow {}^{3}T_{1g}(P)$$



Which gives

$$v_1 = 10 \text{ Dq} \tag{1}$$

$$v_2 = 18 Dq - x$$
 (2)

$$v_3 = 15 B + 12 Dq + x \tag{3}$$

Putting value of x from equation (2) in (3), we get

$$v_3 = 15 B + 12 Dq + 18 Dq - v_2$$
  
 $v_3 = 15 B + 30 Dq - v_2$  (4)

Multiplying equation (1) by 3 and putting the value of 30 Dq from equation (1) in (4), we get

$$v_{3} = 15 B + 3v_{1} - v_{2}$$

$$15 B = v_{3} + v_{2} - 3v_{1}$$

$$B = \frac{v_{3} + v_{2} - 3v_{1}}{15 W}$$
(5)

However, this method is applicable only when three transitions are observed. Moreover, this method is difficult to apply in a precise manner and only gives approximations.

From the Tanabe-Sugano diagram, in the UV-visible spectra of  $[Ni(H_2O)_6]^{2+}$ , three bands are observed with maxima at around 8500, 14500 and 25300 cm<sup>-1</sup>. There are three possible transitions expected, which include:  $v_1 = {}^{3}A_{2g} \rightarrow {}^{3}T_{2g}$ ,  $v_2 = {}^{3}A_{2g} \rightarrow {}^{3}T_{1g}$ , and  $v_3 = {}^{3}A_{2g} \rightarrow {}^{3}T_{1g}(P)$ . The ratio of experimental band energies of  $v_3$  to  $v_2$  is:

$$\frac{v_3}{v_2} = \frac{E_3}{E_2} = \frac{E_3/B}{E_2/B} = \frac{25300}{14500} = 1.74$$

Now slide a ruler across the printed diagram (perpendicular to the abscissa) until the ratio of  $E_2/B$  to  $E_1/B$  between lines becomes equivalent to 1.74. In this particular example, this ratio becomes 1.74 when  $\Delta_0/B$  = 10. Stop the ruler movement and find out the values of  $E_3/B$  and  $E_2/B$  as:

$$\frac{E_3}{B} = 28; \quad \frac{E_2}{B} = 16$$

Thus, on the T-S diagram, where  $\Delta_0/B = 10$ ; the value of  ${}^{3}A_{2g} \rightarrow {}^{3}T_{1g}$  and  ${}^{3}A_{2g} \rightarrow {}^{3}T_{1g}(P)$  i.e. E<sub>2</sub>/B and E<sub>3</sub>/B, are 28 and 16, respectively. The Racah parameter can be found by calculating B from second and third i.e. from v<sub>3</sub> and v<sub>2</sub> transitions.

From  $v_3$ , we get



$$\frac{25300}{B} = 28$$
$$B = \frac{25300}{28} = 904 \text{ cm}^{-1}$$

Similarly

$$\frac{14500}{B} = 16$$
$$B = \frac{14500}{16} = 906 \text{ cm}^{-1}$$

Therefore,

Average value of Racah parameter (B) = 
$$\frac{904 + 906}{2}$$
 = 905 cm<sup>-1</sup>

**2. Calculation of**  $\Delta_0$ : Being a weak-complex, the theoretical value of lowest-energy absorption band given by the Orgel diagram is 10 Dq ( ${}^{3}A_{2g} \rightarrow {}^{3}T_{2g}$ ); and the experimental value for lowest-energy absorption band is 8500 cm<sup>-1</sup>. Hence, the value of 10 Dq or  $\Delta_0$  can be calculated as

$$\begin{array}{c} \textbf{DALA 10 Dq} = 8500 \text{ cm}^{-1} \textbf{TUTE} \\ (info@dalalinstitute 8500 \text{ cm}^{-1} \textbf{1} - 9802825820) \\ \textbf{www.dalalinstitute.com} \end{array}$$

However, this is just the approximation and a more precise and refined calculation should be carried out using the Tanabe-Sugano diagram. From the average value of the Racah parameter, the ligand field splitting parameter can be found as follows.

$$\frac{\Delta_{o}}{B} = 10$$

$$\frac{\Delta_{o}}{905 \text{ cm}^{-1}} = 10$$

$$\Delta_{o} = 9050 \text{ cm}^{-1}$$

**3.** Calculation of  $\beta$ : In order to calculate the nephelauxetic ratio, we must have the value of the Racah parameter for a free metal ion in its gaseous state. For free  $d^8$  ion like Ni<sup>2+</sup>, it has been observed that <sup>3</sup>P state lies 16200 cm<sup>-1</sup> above to the <sup>3</sup>F state. Hence, 15B = 16200 cm<sup>-1</sup> or B = 1080 cm<sup>-1</sup>. Now, the value of nephelauxetic ratio can be calculated as

Nephelauxetic ratio = 
$$\beta = \frac{B_{complex}}{B_{free ion}} = \frac{905 \text{ cm}^{-1}}{1080 \text{ cm}^{-1}} = 0.838$$



#### ➤ d<sup>3</sup> Complexes

Metal complexes with  $d^3$ -configuration have <sup>4</sup>F ground state term symbol in the absence of any crystal field. However, when six ligands approach in octahedral coordination, the ground state term symbol becomes <sup>4</sup>A<sub>2g</sub> and remains as such in weak as well as in strong ligand fields. The Orgel and Tanabe-Sugano diagram for  $d^3$ -configuration can be used to estimate the value of crystal field splitting energy for these transition metal complexes.



Figure 40. The (a) Orgel and (b) Tanabe-Sugano diagrams for  $d^3$  complexes in the octahedral crystal field.

Consider the example of  $[Cr(H_2O)_6]^{3+}$ .

**1. Calculation of B:** From the Orgel diagram, it can be clearly seen that the ground state for  $d^3$ -octahedral complexes is  ${}^{4}A_{2g}$  and there are three main transitions. As the magnitude of the crystal field splitting energy increases, the  ${}^{4}T_{1g}(F)$  and  ${}^{4}T_{1g}(P)$  states repel each other more and more with a magnitude of *x* energy value owing to the non-crossing rule of the same symmetry states.

$$v_1 = {}^4A_{2g} \rightarrow {}^4T_{2g}$$
$$v_2 = {}^4A_{2g} \rightarrow {}^4T_{1g}$$
$$v_3 = {}^4A_{2g} \rightarrow {}^4T_{1g}(P)$$



Which gives

$$v_1 = 10 \text{ Dq} \tag{1}$$

$$v_2 = 18 Dq - x$$
 (2)

$$v_3 = 15 B + 12 Dq + x \tag{3}$$

Putting the value of x from equation (2) in (3), we get

$$v_3 = 15 B + 12 Dq + 18 Dq - v_2$$
  
 $v_3 = 15 B + 30 Dq - v_2$  (4)

Multiplying equation (1) by 3 and putting the value of 30 Dq from equation (1) in (4), we get

$$v_{3} = 15 B + 3v_{1} - v_{2}$$

$$15 B = v_{3} + v_{2} - 3v_{1}$$

$$B = \frac{v_{3} + v_{2} - 3v_{1}}{15 W}$$
(5)

However, this method is applicable only when three transitions are observed. Moreover, this method is difficult to apply in a precise manner and only gives approximations.

From the Tanabe-Sugano diagram, in the UV-visible spectra of  $[Cr(H_2O)_6]^{3+}$ , three bands are observed with maxima at around 17000, 24000 and 37000 cm<sup>+1</sup>. There are three possible transitions expected, which include:  $v_1 = {}^4A_{2g} \rightarrow {}^4T_{2g}$ ,  $v_2 = {}^4A_{2g} \rightarrow {}^4T_{1g}$ , and  $v_3 = {}^4A_{2g} \rightarrow {}^4T_{1g}(P)$ . The ratio of experimental band energies of  $v_2$  to  $v_1$  is:

$$\frac{v_2}{v_1} = \frac{E_2}{E_1} = \frac{E_2/B}{E_1/B} = \frac{24000}{17000} = 1.41$$

Now slide a ruler across the printed diagram (perpendicular to the abscissa) until the ratio of  $E_2/B$  to  $E_1/B$  between lines becomes equivalent to 1.41. In this particular example, this ratio becomes 1.41 when  $\Delta_0/B$  = 24. Stop the ruler movement and find out the values of  $E_2/B$  and  $E_1/B$  as:

$$\frac{E_2}{B} = 33.90; \quad \frac{E_1}{B} = 24$$

Thus, on the T-S diagram, where  $\Delta_0/B = 24$ ; the value of  ${}^4A_{2g} \rightarrow {}^4T_{1g}$  and  ${}^4A_{2g} \rightarrow {}^4T_{1g}(P)$  i.e. E<sub>2</sub>/B and E<sub>3</sub>/B, are 33.90 and 24, respectively. The Racah parameter can be found by calculating B from first and second i.e. from v<sub>2</sub> and v<sub>1</sub> transitions.

From  $v_2$ , we get

$$\frac{24000}{B} = 33.90$$
$$B = \frac{24000}{33.90} = 708 \text{ cm}^{-1}$$

Similarly

$$\frac{17000}{B} = 24$$
$$B = \frac{17000}{24} = 708 \text{ cm}^{-1}$$

Therefore,

Average value of Racah parameter (B) =  $\frac{708 + 708}{2}$  = 708 cm<sup>-1</sup>

**2. Calculation of**  $\Delta_0$ : Being a weak-complex, the theoretical value of lowest-energy absorption band given by the Orgel diagram is 10 Dq ( ${}^{4}A_{2g} \rightarrow {}^{4}T_{2g}$ ); and the experimental value for lowest-energy absorption band is 17000 cm<sup>-1</sup>. Hence, the value of 10 Dq or  $\Delta_0$  can be calculated as

DALA 10 
$$Dq = 17000 \text{ cm}^{-1}$$
 TUTE  
(info@dalalinstitute\_17000 cm^{-1}-9802825820)  
www.dalalinstitute.com

However, this is just the approximation and a more precise and refined calculation should be carried out using the Tanabe-Sugano diagram. From the average value of the Racah parameter, the ligand field splitting parameter can be found as follows.

$$\frac{\Delta_0}{B} = 24$$
$$\frac{\Delta_0}{708 \text{ cm}^{-1}} = 24$$
$$\Delta_0 = 16992 \text{ cm}^{-1}$$

**3.** Calculation of  $\beta$ : In order to calculate the nephelauxetic ratio, we must have the value of the Racah parameter for a free metal ion in its gaseous state. For free  $d^3$  ion like  $Cr^{3+}$ , it has been observed that <sup>3</sup>P state lies 15450 cm<sup>-1</sup> above to the <sup>3</sup>F state. Hence, 15B = 15450 cm<sup>-1</sup> or B = 1030 cm<sup>-1</sup>. Now, the value of nephelauxetic ratio can be calculated as:

Nephelauxetic ratio = 
$$\beta = \frac{B_{complex}}{B_{free ion}} = \frac{708 \text{ cm}^{-1}}{1030 \text{ cm}^{-1}} = 0.687$$



#### $\succ$ d<sup>7</sup> Complexes

Metal complexes with  $d^7$ -configuration have <sup>4</sup>F ground state term symbol in the absence of any crystal field. However, when six ligands approach in octahedral coordination, the ground state term symbol becomes <sup>4</sup>T<sub>1g</sub> in the weak field; and becomes <sup>2</sup>E<sub>g</sub> when the ligand field becomes sufficiently strong. The Orgel and Tanabe-Sugano diagram for  $d^7$ -configuration can be used to estimate the value of crystal field splitting energy for these complexes.



Figure 41. The (a) Orgel and (b) Tanabe-Sugano diagrams for d<sup>7</sup> complexes in the octahedral crystal field.

Consider the example of  $[Co(H_2O)_6]^{2+}$ 

**1. Calculation of B:** From the Orgel diagram, it can be clearly seen that the ground state for  $d^7$ -octahedral complexes is  ${}^{4}T_{1g}$  and there are three main transitions before the crossover point. Moreover, it is worthy to note down that the order of second and third transitions is reversed after the crossover point and only two bands will be observed at or near the crossover point. As the magnitude of the crystal field splitting energy increases, the  ${}^{4}T_{1g}(F)$  and  ${}^{4}T_{1g}(P)$  states repel each other more and more with a magnitude of *x* energy value.

$$v_1 = {}^4T_{1g} \longrightarrow {}^4T_{2g}$$
$$v_2 = {}^4T_{1g} \longrightarrow {}^4A_{2g}$$



$$v_{3} = {}^{4}T_{1g} \rightarrow {}^{4}T_{1g}(P)$$
  
Which gives  
$$v_{1} = 8 Dq + x \qquad (1)$$
$$v_{2} = 18 Dq + x \qquad (2)$$
$$v_{3} = 15 B + 6 Dq + 2x \qquad (3)$$
  
Adding equation (1) and (2), we get  
$$v_{2} + v_{1} = 18 Dq + x + 8 Dq + x$$
$$v_{2} + v_{1} = 26 Dq + 2x \qquad (4)$$
  
Subtracting equation (1) and (2), we get  
$$v_{2} - v_{1} = 10 Dq \qquad (5)$$
  
Putting the value of 2x from equation (3), we get  
$$v_{3} = 15 B + 6 Dq + v_{2} + v_{1} - 26 Dq = 1$$
(info@da\_institute\_compared to the second to the

 $B = \frac{\nu_3 + \nu_2 - 3\nu_1}{15}$ (7)

However, only two transitions are observed, this method is difficult to apply in a precise manner and only gives approximations.

From the Tanabe-Sugano diagram, in the UV-visible spectra of  $[Co(H_2O)_6]^{2+}$ , two bands are observed with maxima at around 8000, 19600 and 21600 cm<sup>-1</sup>. There are three possible transitions expected, which include:  $v_1 = {}^4T_{1g} \rightarrow {}^4T_{2g}$ ,  $v_2 = {}^4T_{1g} \rightarrow {}^4A_{2g}$  and  $v_3 = {}^4T_{1g} \rightarrow {}^4T_{1g}(P)$ . The ratio of experimental band energies is:

$$\frac{\nu_3}{\nu_1} = \frac{E_3}{E_1} = \frac{E_3/B}{E_1/B} = \frac{21600}{8000} = 2.70$$



Now slide a ruler across the printed diagram (perpendicular to the abscissa) until the ratio of  $E_3/B$  to  $E_1/B$  between lines becomes equivalent to 2.70. In this particular example, this ratio becomes 2.70 when  $\Delta_0/B = 9.5$ . Stop the ruler movement and find out the values of  $E_2/B$  and  $E_1/B$  as:

$$\frac{E_3}{B} = 22; \quad \frac{E_1}{B} = 8.2$$

Thus, on the T-S diagram, where  $\Delta_0/B = 31$ ; the value of  ${}^{3}T_{1g} \rightarrow {}^{3}T_{2g}$  and  ${}^{3}T_{1g} \rightarrow {}^{3}T_{1g}(P)$  i.e.  $E_1/B$  and  $E_3/B$ , are 8.2 and 22, respectively. The Racah parameter can be found by calculating B from both  $v_2$  and  $v_1$ .

$$\frac{21600}{B} = 22; \quad \frac{8000}{B} = 8.2$$
$$B = \frac{21600}{22} = 982 \text{ cm}^{-1}; \quad B = \frac{8000}{8.2} = 976 \text{ cm}^{-1}$$

Average value of Racah parameter (B) =  $\frac{982 + 976}{2}$  = 979 cm<sup>-1</sup>

2. Calculation of  $\Delta_0$ : Being a weak-complex, the theoretical value of lowest-energy absorption band given by the Orgel diagram is 8 Dq ( ${}^{3}T_{1g} \rightarrow {}^{3}T_{2g}$ ); and the experimental value for lowest-energy absorption band is 8000 cm<sup>-1</sup>. Hence, the value of 10 Dq or  $\Delta_0$  can be calculated as

$$D_{a} = 0.8 \Delta_{o} = 8000 \text{ cm}^{-1}$$
(info@dalalinstitute.com, +91-9802825820)  

$$\Delta_{o} = \frac{8000 \text{ cm}^{-1}}{0.8}$$

$$\Delta_{o} = 10 \text{ Dq} = 10000 \text{ cm}^{-1}$$

However, this is just the approximation and a more precise and refined calculation should be carried out using the Tanabe-Sugano diagram. From the average value of the Racah parameter, the ligand field splitting parameter can be found as follows.

$$\frac{\Delta_{o}}{B} = 9.5;$$
  $\frac{\Delta_{o}}{979 \text{ cm}^{-1}} = 9.5;$   $\Delta_{o} = 9300 \text{ cm}^{-1}$ 

**3.** Calculation of  $\beta$ : In order to calculate the nephelauxetic ratio, we must have the value of the Racah parameter for a free metal ion in its gaseous state. For free  $d^7$  ion like Co<sup>2+</sup>, it has been observed that <sup>3</sup>P state lies 16755 cm<sup>-1</sup> above to the <sup>3</sup>F state. Hence, 15B = 16755 cm<sup>-1</sup> or B = 1117 cm<sup>-1</sup>. Now, the value of nephelauxetic ratio can be calculated as:

Nephelauxetic ratio = 
$$\beta = \frac{B_{complex}}{B_{free ion}} = \frac{979 \text{ cm}^{-1}}{1117 \text{ cm}^{-1}} = 0.876$$

#### ➤ d<sup>4</sup> Complexes

Metal complexes with  $d^4$ -configuration have <sup>5</sup>D ground state term symbol in the absence of any crystal field. However, when six ligands approach in octahedral coordination, the ground state term symbol becomes <sup>5</sup>E<sub>g</sub> in the weak field; and becomes <sup>3</sup>T<sub>1g</sub> when the ligand field becomes sufficiently strong. The Orgel and Tanabe-Sugano diagram for  $d^4$ -configuration can be used to estimate the value of crystal field splitting energy for these complexes.



Figure 42. The (a) Orgel and (b) Tanabe-Sugano diagrams for  $d^4$  complexes in the octahedral crystal field.

Consider the example of [Mn(CN)<sub>6</sub>]<sup>3-</sup>

**1. Calculation of B:** From the Tanabe-Sugano diagram, it can clearly be seen that the spin-allowed *d-d* transitions in low-spin  $d^4$  metal complexes are  ${}^{3}T_{1g} \rightarrow {}^{3}E_{g}$ ,  ${}^{3}T_{1g} \rightarrow {}^{3}T_{2g}$ ,  ${}^{3}T_{1g} \rightarrow {}^{3}A_{1g}$  and  ${}^{3}T_{1g} \rightarrow {}^{3}A_{2g}$ . In the UV-visible absorption spectra of  $[Mn(CN)_{6}]^{3-}$ , three bands are observed; one strong band with maxima at around 27000 and other two bands at 29000 and 34000 cm<sup>-1</sup>. Moreover, the bands at 21800 and 43500 cm<sup>-1</sup> can be ignored as they correspond to charge transfer transitions. Thus, the ratio of experimental energies is

$$\frac{v_2}{v_1} = \frac{E_2}{E_1} = \frac{E_2/B}{E_1/B} = \frac{29000 \text{ cm}^{-1}}{27000 \text{ cm}^{-1}} = 1.07$$

Now slide a ruler across the printed diagram (perpendicular to the abscissa) until the ratio of  $E_2/B$  to  $E_1/B$  i.e. the ratio between the lines corresponding to the first two spin-allowed transitions becomes equivalent



to 1.07. In this particular example, this ratio becomes 1.07 when  $\Delta_0/B = 40$ . Stop the ruler movement and find out the values of  $E_2/B$  and  $E_1/B$ .

$$\frac{E_2}{B} = 38; \quad \frac{E_1}{B} = 35$$

Thus, on the T-S diagram, where  $\Delta_0/B = 40$ ; the value of  ${}^{3}T_{1g} \rightarrow {}^{3}T_{2g}$  and  ${}^{3}T_{1g} \rightarrow {}^{3}E_g$  i.e.  $E_2/B$  and  $E_1/B$ , are 38 and 35, respectively. The Racah parameter can be found by calculating B from both  $v_2$  and  $v_1$ .

$$\frac{29000 \text{ cm}^{-1}}{\text{B}} = 38; \quad \frac{27000 \text{ cm}^{-1}}{\text{B}} = 35$$
$$\text{B} = \frac{29000 \text{ cm}^{-1}}{38} = 763 \text{ cm}^{-1}; \quad \text{B} = \frac{27000 \text{ cm}^{-1}}{35} = 771 \text{ cm}^{-1}$$
$$\text{Average value of Racah parameter (B)} = \frac{763 \text{ cm}^{-1} + 771 \text{ cm}^{-1}}{2} = 767 \text{ cm}^{-1}$$

2. Calculation of  $\Delta_0$ : The only parameter that is needed to be sought for the calculation of the magnitude of crystal field splitting energy (10 Dq) in weak field complexes is the single absorption band in a UV-vis experiment. Hence, the energy of the transition  ${}^5E_g \rightarrow {}^5T_{2g}$  should give the value of  $\Delta$  directly. In other words, the lowest energy absorption band in  $d^4$  high-spin complexes is equal to the crystal field splitting energy. However, the magnitude of crystal field splitting energy for high-spin  $d^4$  complexes cannot be obtained accurately from the Orgel diagram as the Jahn-Teller distortion reduces the symmetry from perfectly octahedral to a tetragonal geometry. The effect of Jahn-Teller distortion will be discussed later in this chapter. Furthermore, the practical applicability of the Tanabe-Sugano diagram in the high-spin region (before  $\Delta_0/B = 27$ ) is strongly doubted because only one spin allowed transition is present, and it is a fact that two minimum spin-allowed transitions are required for the ratio calculation.

Being a strong-field complex, the theoretical value of crystal field splitting energy in  $[Mn(CN)_6]^{3-}$  cannot be given by the Orgel diagram; hence, we are bound to use Tanabe-Sugano diagram. From the average value of the Racah parameter, what we have deduced earlier, the ligand field splitting parameter can be found as follows.

$$\frac{\Delta_{o}}{B} = 40;$$
  $\frac{\Delta_{o}}{767 \text{ cm}^{-1}} = 40;$   $\Delta_{o} = 30680 \text{ cm}^{-1}$ 

**3.** Calculation of  $\beta$ : In order to calculate the nephelauxetic ratio, we must have the value of the Racah parameter for a free metal ion in its gaseous state. For free  $d^4$  ion like Mn<sup>3+</sup>, the value of B is found to be 1140 cm<sup>-1</sup>. Now, the value of nephelauxetic ratio can be calculated as

Nephelauxetic ratio = 
$$\beta = \frac{B_{complex}}{B_{free ion}} = \frac{767 \text{ cm}^{-1}}{1140 \text{ cm}^{-1}} = 0.673$$



#### ➤ d<sup>6</sup> Complexes

Metal complexes with  $d^6$ -configuration have <sup>5</sup>D ground state term symbol in the absence of any crystal field. However, when six ligands approach in octahedral coordination, the ground state term symbol becomes  ${}^5T_{2g}$  in the weak field; and becomes  ${}^1A_{1g}$  when the ligand field becomes sufficiently strong. The Orgel and Tanabe-Sugano diagram for  $d^6$ -configuration can be used to estimate the value of crystal field splitting energy for these complexes.



Figure 42. The (a) Orgel and (b) Tanabe-Sugano diagrams for  $d^6$  complexes in octahedral crystal field.

Consider the example of  $[Co(en)_3]^{3+}$ 

**1. Calculation of B:** From the Tanabe-Sugano diagram, it can clearly be seen that the spin-allowed *d-d* transitions in low-spin  $d^6$  metal complexes are  ${}^{1}A_{1g} \rightarrow {}^{1}T_{1g}$  and  ${}^{1}A_{1g} \rightarrow {}^{1}T_{2g}$ . In the UV-visible absorption spectra of  $[Co(en)_3]^{3+}$ , two bands are observed; one strong band with maxima at around 21450 and the other band at 29450 cm<sup>-1</sup>. Therefore, the ratio of experimental band energies is

$$\frac{v_2}{v_1} = \frac{E_2}{E_1} = \frac{E_2/B}{E_1/B} = \frac{29450 \text{ cm}^{-1}}{21450 \text{ cm}^{-1}} = 1.37$$

Now slide a ruler across the printed diagram (perpendicular to the abscissa) until the ratio of  $E_2/B$  to  $E_1/B$  i.e. the ratio between the lines corresponding to the first two spin-allowed transitions becomes equivalent



to 1.37. In this particular example, this ratio becomes 1.37 when  $\Delta_0/B = 40$ . Stop the ruler movement and find out the values of E<sub>2</sub>/B and E<sub>1</sub>/B.

$$\frac{E_2}{B} = 52; \quad \frac{E_1}{B} = 38$$

Thus, on the T-S diagram, where  $\Delta_0/B = 40$ ; the value of  ${}^1A_{1g} \rightarrow {}^1T_{2g}$  and  ${}^1A_{1g} \rightarrow {}^1T_{1g}$  i.e. E<sub>2</sub>/B and E<sub>1</sub>/B, are 52 and 38, respectively. The Racah parameter can be found by calculating B from both v<sub>2</sub> and v<sub>1</sub>.

$$\frac{29450 \text{ cm}^{-1}}{\text{B}} = 52; \quad \frac{21450 \text{ cm}^{-1}}{\text{B}} = 38$$
$$B = \frac{29450 \text{ cm}^{-1}}{52} = 566 \text{ cm}^{-1}; \quad B = \frac{21450 \text{ cm}^{-1}}{38} = 564 \text{ cm}^{-1}$$
Average value of Racah parameter (B) =  $\frac{566 \text{ cm}^{-1} + 564 \text{ cm}^{-1}}{2} = 565 \text{ cm}^{-1}$ 

**2 2. Calculation of**  $\Delta_0$ : The only parameter that is needed to be sought for the calculation of the magnitude of crystal field splitting energy (10 Dq) in weak-field  $d^6$ -complexes is the single absorption band in a UV-vis experiment. Hence, the energy of the transition  ${}^5T_{2g} \rightarrow {}^5E_g$  should give the value of  $\Delta$  directly. In other words, the lowest energy absorption band in  $d^6$  high-spin complexes is equal to the crystal field splitting energy. However, the magnitude of crystal field splitting energy for high-spin  $d^6$  complexes cannot be obtained accurately from the Orgel diagram as the Jahn-Teller distortion reduces the symmetry from perfectly octahedral to a tetragonal geometry. The effect of Jahn-Teller distortion will be discussed later in this chapter. Furthermore, the practical applicability of the Tanabe-Sugano diagram in the high-spin region (before  $\Delta_0/B = 20$ ) is strongly doubted because only one spin allowed transition is present, and it is a fact that two minimum spin-allowed transitions are required for the ratio calculation.

Being a strong-field complex, the theoretical value of crystal field splitting energy in  $[Co(en)_3]^{3+}$  cannot be given by the Orgel diagram; hence, we are bound to use Tanabe-Sugano diagram. From the average value of the Racah parameter, what we have deduced earlier, the ligand field splitting parameter can be found as follows.

$$\frac{\Delta_{o}}{B} = 40;$$
  $\frac{\Delta_{o}}{565 \text{ cm}^{-1}} = 40;$   $\Delta_{o} = 22600 \text{ cm}^{-1}$ 

**3.** Calculation of  $\beta$ : In order to calculate the nephelauxetic ratio, we must have the value of the Racah parameter for a free metal ion in its gaseous state. For free  $d^6$  ion like Co<sup>3+</sup>, the value of B is found to be 1100 cm<sup>-1</sup>. Now, the value of nephelauxetic ratio can be calculated as

Nephelauxetic ratio = 
$$\beta = \frac{B_{complex}}{B_{free ion}} = \frac{565 \text{ cm}^{-1}}{1100 \text{ cm}^{-1}} = 0.514$$

#### ➤ d<sup>5</sup> Complexes

Metal complexes with  $d^5$ -configuration have <sup>6</sup>S ground state term symbol in the absence of any crystal field. However, when six ligands approach in octahedral coordination, the ground state term symbol becomes <sup>6</sup>A<sub>1g</sub> in the weak field; and becomes <sup>2</sup>T<sub>2g</sub> when the ligand field becomes sufficiently strong. The Tanabe-Sugano diagram for  $d^5$ -configuration can be used to estimate the value of crystal field splitting energy for these complexes.



Figure 42. The (a) Orgel and (b) Tanabe-Sugano diagrams for  $d^5$  complexes in the octahedral crystal field.

Consider the example of  $[Mn(H_2O)_6]^{2+}$ 

**1. Calculation of B:** From the Tanabe-Sugano diagram, it can clearly be seen that there is no spin-allowed *dd* transitions in high-spin  $d^5$  metal complexes. However, main spin-forbidden transitions are  ${}^{6}A_{1g} \rightarrow {}^{4}T_{1g}(G)$ ,  ${}^{6}A_{1g} \rightarrow {}^{4}T_{2g}(G)$ ,  ${}^{6}A_{1g} \rightarrow {}^{4}A_{1g}(G)$ ,  ${}^{6}A_{1g} \rightarrow {}^{4}E_{g}(G)$ ,  ${}^{1}A_{1g} \rightarrow {}^{4}T_{2g}(D)$  and  ${}^{1}A_{1g} \rightarrow {}^{4}E_{g}(D)$ . In the UV-visible absorption spectra of  $[Mn(H_2O)_6]^{2+}$ , the first two bands are observed at around 18600 and the other band at 22900 cm<sup>-1</sup>. Therefore, the ratio of experimental band energies is

$$\frac{v_2}{v_1} = \frac{E_2}{E_1} = \frac{E_2/B}{E_1/B} = \frac{22900 \text{ cm}^{-1}}{18600 \text{ cm}^{-1}} = 1.23$$

Now slide a ruler across the printed diagram (perpendicular to the abscissa) until the ratio of  $E_2/B$  to  $E_1/B$  i.e. the ratio between the lines corresponding to the first two spin-allowed transitions becomes equivalent



to 1.23. In this particular example, this ratio becomes 1.23 when  $\Delta_0/B = 11$ . Stop the ruler movement and find out the values of E<sub>2</sub>/B and E<sub>1</sub>/B.

$$\frac{E_2}{B} = 29$$
$$\frac{E_1}{B} = 24$$

Thus, on the Tanabe-Sugano diagram, where  $\Delta_0/B = 11$ ; the value of  ${}^6A_{1g} \rightarrow {}^4T_{2g}(G)$  and  ${}^6A_{1g} \rightarrow {}^4T_{1g}(G)$  i.e.  $E_2/B$  and  $E_1/B$ , are 29 and 24, respectively. The Racah parameter can be found by calculating B from both  $v_2$  and  $v_1$ .

$$\frac{22900 \text{ cm}^{-1}}{\text{B}} = 29$$

$$\frac{18600 \text{ cm}^{-1}}{\text{B}} = 24$$

$$B = \frac{22900 \text{ cm}^{-1}}{29} = 789 \text{ cm}^{-1}; \quad B = \frac{18600 \text{ cm}^{-1}}{24} = 775 \text{ cm}^{-1}$$
Average value of Racah parameter (B) =  $\frac{789 \text{ cm}^{-1} + 775 \text{ cm}^{-1}}{2} = 782 \text{ cm}^{-1}$ 

2. Calculation of  $\Delta_0$ : The magnitude of crystal field splitting energy for high-spin  $d^5$  complexes cannot be obtained accurately from the Orgel diagram as the degeneracy of the ground state term is only one and does not split at all in the octahedral field. Therefore, we are bound to use the Tanabe-Sugano diagram. From the average value of the Racah parameter, what we have deduced earlier, the ligand field splitting parameter can be found as follows.

$$\frac{\Delta_{o}}{B} = 11$$
$$\frac{\Delta_{o}}{782 \text{ cm}^{-1}} = 11$$
$$\Delta_{o} = 8602 \text{ cm}^{-1}$$

**3.** Calculation of  $\beta$ : In order to calculate the nephelauxetic ratio, we must have the value of Racah parameter for a free metal ion in its gaseous state. For free  $d^5$  ion like  $Mn^{2+}$ , the value of B is found to be 960 cm<sup>-1</sup>. Now, the value of nephelauxetic ratio can be calculated as

Nephelauxetic ratio = 
$$\beta = \frac{B_{complex}}{B_{free ion}} = \frac{782 \text{ cm}^{-1}}{960 \text{ cm}^{-1}} = 0.814$$



### LEGAL NOTICE

This document is an excerpt from the book entitled "A Textbook of Inorganic Chemistry – Volume 1 by Mandeep Dalal", and is the intellectual property of the Author/Publisher. The content of this document is protected by international copyright law and is valid only for the personal preview of the user who has originally downloaded it from the publisher's website (www.dalalinstitute.com). Any act of copying (including plagiarizing its language) or sharing this document will result in severe civil and criminal prosecution to the maximum extent possible under law.



This is a low resolution version only for preview purpose. If you want to read the full book, please consider buying.

Buy the complete book with TOC navigation, high resolution images and no watermark.



Home: https://www.dalalinstitute.com/ Classes: https://www.dalalinstitute.com/classes/ Books: https://www.dalalinstitute.com/books/ Videos: https://www.dalalinstitute.com/videos/ Location: https://www.dalalinstitute.com/location/ Contact Us: https://www.dalalinstitute.com/contact-us/ About Us: https://www.dalalinstitute.com/about-us/

| Postgraduate Level Classes     |                             | Undergraduate Level Classes    |                             |
|--------------------------------|-----------------------------|--------------------------------|-----------------------------|
| (NET-JRF & IIT-GATE)           |                             | (M.Sc Entrance & IIT-JAM)      |                             |
| Admission                      |                             | Admission                      |                             |
| Regular Program<br>Test Series | Distance Learning<br>Result | Regular Program<br>Test Series | Distance Learning<br>Result |

#### A Textbook of Inorganic Chemistry - Volume 1

"A Textbook of Inorganic Chemistry – Volume 1 by Mandeep Dalal" is now available globally; including India, America and most of the European continent. Please ask at your local bookshop or get it online here. READ MORE

Join the revolution by becoming a part of our community and get all of the member benefits like downloading any PDF document for your personal preview.

Sign Up



# A TEXTBOOK OF INORGANIC CHEMISTRY Volume I

MANDEEP DALAL



First Edition

DALAL INSTITUTE

## **Table of Contents**

| CHAP  | ГЕR 1                                                                                           | 11        |
|-------|-------------------------------------------------------------------------------------------------|-----------|
| Stere | cochemistry and Bonding in Main Group Compounds:                                                | 11        |
| *     | VSEPR Theory                                                                                    | 11        |
| *     | $d\pi$ – $p\pi$ Bonds                                                                           | 23        |
| *     | Bent Rule and Energetic of Hybridization                                                        | 28        |
| *     | Problems                                                                                        | 42        |
| *     | Bibliography                                                                                    | 43        |
| СНАР  | ΓER 2                                                                                           | 44        |
| Meta  | I-Ligand Equilibria in Solution:                                                                | 44        |
| *     | Stepwise and Overall Formation Constants and Their Interactions                                 | 44        |
| *     | Trends in Stepwise Constants                                                                    | 46        |
| *     | Factors Affecting Stability of Metal Complexes with Reference to the Nature of Metal Ion Ligand | and<br>49 |
| *     | Chelate Effect and Its Thermodynamic Origin                                                     | 56        |
| *     | Determination of Binary Formation Constants by pH-metry and Spectrophotometry                   | 63        |
| *     | Problems                                                                                        | 68        |
| *     | Bibliography                                                                                    | 69        |
| СНАР  | ΓER 3                                                                                           | 70        |
| Reac  | tion Mechanism of Transition Metal Complexes – I:                                               | 70        |
| *     | Inert and Labile Complexes                                                                      | 70        |
| *     | Mechanisms for Ligand Replacement Reactions                                                     | 77        |
| *     | Formation of Complexes from Aquo Ions                                                           | 82        |
| *     | Ligand Displacement Reactions in Octahedral Complexes- Acid Hydrolysis, Base Hydrolysis.        | 86        |
| *     | Racemization of Tris Chelate Complexes                                                          | 89        |
| *     | Electrophilic Attack on Ligands                                                                 | 92        |
| *     | Problems                                                                                        | 94        |
| *     | Bibliography                                                                                    | 95        |

| CHAP  | TER 4                                                                                                                                                                                                                                               | 96                                      |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Reac  | tion Mechanism of Transition Metal Complexes – II:                                                                                                                                                                                                  |                                         |
| *     | Mechanism of Ligand Displacement Reactions in Square Planar Complexes                                                                                                                                                                               |                                         |
| *     | The Trans Effect                                                                                                                                                                                                                                    |                                         |
| *     | Theories of Trans Effect                                                                                                                                                                                                                            | 103                                     |
| *     | Mechanism of Electron Transfer Reactions – Types; Outer Sphere Electron Transfer I<br>Inner Sphere Electron Transfer Mechanism                                                                                                                      | Mechanism and                           |
| *     | Electron Exchange                                                                                                                                                                                                                                   |                                         |
| *     | Problems                                                                                                                                                                                                                                            | 121                                     |
| *     | Bibliography                                                                                                                                                                                                                                        | 122                                     |
| CHAP  | TER 5                                                                                                                                                                                                                                               |                                         |
| Isopo | oly and Heteropoly Acids and Salts:                                                                                                                                                                                                                 | 123                                     |
| *     | Isopoly and Heteropoly Acids and Salts of Mo and W: Structures of Isopoly a Anions                                                                                                                                                                  | and Heteropoly<br>123                   |
| *     | Problems                                                                                                                                                                                                                                            |                                         |
| *     | Bibliography                                                                                                                                                                                                                                        |                                         |
| CHAP' | TER 6                                                                                                                                                                                                                                               |                                         |
| Crys  | tal Structures:                                                                                                                                                                                                                                     |                                         |
| *     | Structures of Some Binary and Ternary Compounds Such as Fluorite, Antifluorite, Ru<br>Crystobalite, Layer Lattices - CdI <sub>2</sub> , BiI <sub>3</sub> ; ReO <sub>3</sub> , Mn <sub>2</sub> O <sub>3</sub> , Corundum, Pervoskite, Ilr<br>Calcite | ntile, Antirutile,<br>nenite and<br>154 |
| *     | Problems                                                                                                                                                                                                                                            |                                         |
| *     | Bibliography                                                                                                                                                                                                                                        | 179                                     |
| СНАР  | TER 7                                                                                                                                                                                                                                               |                                         |
| Meta  | Il-Ligand Bonding:                                                                                                                                                                                                                                  | 180                                     |
| *     | Limitation of Crystal Field Theory                                                                                                                                                                                                                  |                                         |
| *     | Molecular Orbital Theory – Octahedral, Tetrahedral or Square Planar Complexes                                                                                                                                                                       |                                         |
| *     | $\pi$ -Bonding and Molecular Orbital Theory                                                                                                                                                                                                         | 198                                     |
| *     | Problems                                                                                                                                                                                                                                            |                                         |
| *     | Bibliography                                                                                                                                                                                                                                        |                                         |

| CHAP  | ΓER 8                                                                                | 214 |
|-------|--------------------------------------------------------------------------------------|-----|
| Elect | ronic Spectra of Transition Metal Complexes:                                         | 214 |
| *     | Spectroscopic Ground States                                                          | 214 |
| *     | Correlation and Spin-Orbit Coupling in Free Ions for 1st Series of Transition Metals | 243 |
| *     | Orgel and Tanabe-Sugano Diagrams for Transition Metal Complexes $(d^1 - d^9$ States) | 248 |
| *     | Calculation of Dq, B and $\beta$ Parameters                                          | 280 |
| *     | Effect of Distortion on the <i>d</i> -Orbital Energy Levels                          | 300 |
| *     | Structural Evidence from Electronic Spectrum                                         | 307 |
| *     | Jahn-Tellar Effect                                                                   | 312 |
| *     | Spectrochemical and Nephelauxetic Series                                             | 324 |
| *     | Charge Transfer Spectra                                                              | 328 |
| *     | Electronic Spectra of Molecular Addition Compounds                                   | 336 |
| *     | Problems                                                                             | 340 |
| *     | Bibliography                                                                         | 341 |
| CHAP  | ГЕ <b>R 9</b>                                                                        | 342 |
| Mag   | netic Properties of Transition Metal Complexes:                                      | 342 |
| *     | Elementary Theory of Magneto-Chemistry                                               | 342 |
| *     | Guoy's Method for Determination of Magnetic Susceptibility                           | 351 |
| *     | Calculation of Magnetic Moments                                                      | 354 |
| *     | Magnetic Properties of Free Ions                                                     | 359 |
| *     | Orbital Contribution: Effect of Ligand-Field                                         | 362 |
| *     | Application of Magneto-Chemistry in Structure Determination                          | 370 |
| *     | Magnetic Exchange Coupling and Spin State Cross Over                                 | 375 |
| *     | Problems                                                                             | 384 |
| *     | Bibliography                                                                         | 385 |
| CHAP  | ГЕR 10                                                                               | 386 |
| Meta  | l Clusters:                                                                          | 386 |
| *     | Structure and Bonding in Higher Boranes                                              | 386 |
| *     | Wade's Rules                                                                         | 401 |

| *    | Carboranes                                                                                                   | 407                    |
|------|--------------------------------------------------------------------------------------------------------------|------------------------|
| *    | Metal Carbonyl Clusters- Low Nuclearity Carbonyl Clusters                                                    | 412                    |
| *    | Total Electron Count (TEC)                                                                                   | 417                    |
| *    | Problems                                                                                                     |                        |
| *    | Bibliography                                                                                                 |                        |
| СНАЕ | PTER 11                                                                                                      |                        |
| Met  | al-П Complexes:                                                                                              | 426                    |
| *    | Metal Carbonyls: Structure and Bonding                                                                       | 426                    |
| *    | Vibrational Spectra of Metal Carbonyls for Bonding and Structure Elucidation                                 | 439                    |
| *    | Important Reactions of Metal Carbonyls                                                                       | 446                    |
| *    | Preparation, Bonding, Structure and Important Reactions of Transition Metal Nitros<br>and Dioxygen Complexes | syl, Dinitrogen<br>450 |
| *    | Tertiary Phosphine as Ligand                                                                                 |                        |
| *    | Problems                                                                                                     |                        |
| *    | Bibliography                                                                                                 |                        |
| INDE | X                                                                                                            |                        |



Mandeep Dalal (M.Sc, Ph.D, CSIR UGC - NET JRF, IIT - GATE) Founder & Director, Dalal Institute Contact No: +91-9802825820 Homepage: www.mandeepdalal.com E-Mail: dr.mandeep.dalal@gmail.com

Mandeep Dalal is an Indian research scholar who is primarily working in the field of Science and Philosophy. He received his Ph.D in Chemistry from Maharshi Dayanand University, Rohtak, in 2018. He is also the Founder and Director of "Dalal Institute", an India-based educational organization which is trying to revolutionize the mode of higher education in Chemistry across the globe. He has published more than 40 research papers in various international scientific journals, including mostly from Elsevier (USA), IOP (UK) and Springer (Netherlands).

Other Books by the Author A TEXTBOOK OF INORGANIC CHEMISTRY - VOLUME I. II. III. IV A TEXTBOOK OF PHYSICAL CHEMISTRY - VOLUME I. II. III. IV A TEXTBOOK OF ORGANIC CHEMISTRY - VOLUME I. II. III. IV





Main Market, Sector 14, Rohtak, Haryana 124001, India (+91-9802825820, info@dalalinstitute.com) www.dalalinstitute.com