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CHAPTER 1 
Quantum Mechanics – I 
 Postulates of Quantum Mechanics

In modern quantum theory, the postulates of quantum mechanics are simply the step-to-step 
procedure to solve a simple quantum mechanical problem. In other words, it is like the manual that must be 
followed to retrieve the information about various states of any quantum mechanical system. We will first 
learn about the nature and the significance of these postulates, and then we will apply them to some real 
problems like the particle in a one-dimensional box or the harmonic oscillator. 

 The First Postulate

All time-independent states of any quantum mechanical system can be described mathematically as 
long as the function used is single-valued, continuous and finite. 

Explanation: The systems around us can be broadly classified into two categories; the first is classical and the 
other one as quantum mechanical. The classical systems simply refer to the systems which are governed by 
the classical or the Newtonian mechanics. Now because all the macroscopic objects follow Newton’s laws of 
motion, they fall in the category of classical systems; for example, a rotating gym dumbbell, the vibrating 
spring of steel, or an athlete running in the playground. Every classical system can possess many states which 
belong to a continuous domain, and each state can be described mathematically. 

However, if the rotating gym dumbbell is replaced by the rotating diatomic molecule, the system 
would not remain classical anymore and would start violating classical laws. The states of such microscopic 
systems (here it just means the extremely small) belong to a discontinuous domain and can also be described 
mathematically. These mathematical descriptions are labeled as ψ1, ψ2, ψ3 ….. ψn and generally called as the 
“wave functions”. The term “wave function” is used because as we go from the macroscopic to the microscopic 
world i.e. from classical to the quantum mechanical world, things start behaving like waves rather particle. All 
of the states are wave-like; and because every wave we see around us is continuous, single-valued and finite; 

https://www.dalalinstitute.com/books/a-textbook-of-physical-chemistry-volume-1/


12 A Textbook of Physical Chemistry – Volume I 

 Copyright © Mandeep Dalal  

only continuous, single-valued and finite expressions can represent those states. For instance, when you drop 
a stone in a standstill pond, the waves are generated which travel from the center to the boundary of the pond; 
and you don’t see any discontinuity in it.  

 

               Hence, if a function is not single-valued, continuous and finite; it will not be able to represent any 
wave-like behavior at all. That is why every function that correlates a quantum mechanical state must be single-
valued, continuous and finite; and this function describes the corresponding state completely. 

 The Second Postulate 

               For every physical property like linear momentum or the kinetic energy, a particular operator exists 
in quantum mechanics, the nature of which depends upon the classical expression of the same property. 

Explanation: In classical mechanics, there are simply straight forward formulas for all physical properties; 
like linear momentum can simply be calculated by multiplying the mass with velocity. However, in case of 
quantum mechanical systems, the value of a certain physical property for a particular state cannot be calculated 
simply by using its classical formula but from an operator. It does sound silly but the classical formulas which 
are so well-tested on the scale of time fail in quantum world. For instance, you can use the mv2/2 to calculate 
the kinetic energy of a moving particle in classical world by just putting its mass and velocity; but if the mass 
of the moving particle is extremely less, you will not get any rational results.  

               It is also worthy to note it again that though the classical formulas fail to give the value of physical 
property, they are still important as they form the basis of the derivations for corresponding quantum 
mechanical operators. For instance, the operator for kinetic energy (T) along x-axis can be derived as: 

 
𝐾. 𝐸. (𝑇) =

1

2
𝑚𝑣2 =

(𝑚𝑣)2

2𝑚
=
𝑝2

2𝑚
 

(1) 

Where m and v are mass and the velocity, respectively; and p represents the angular momentum whose squared 
operator is: 
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�̂�𝑥
2 =

−ℎ2

4𝜋2
𝜕2

𝜕𝑥2
(2) 

 Now putting the value of momentum squared from equation (2) into equation (1), we get: 

�̂�𝑥 =
−ℎ2

8𝜋2𝑚

𝜕2

𝜕𝑥2
(3) 

The expressions of various quantum mechanical operators are given below. 

Table 1. Various important physical properties and their corresponding quantum mechanical operators. 

Physical property Operator 

Name Symbol Symbol Operation 

Position x 𝑥 Multiplication by x 

Position squared x2 𝑥2 Multiplication by x2 

Momentum px �̂�𝑥 ℎ

2𝜋𝑖

𝜕

𝜕𝑥

Momentum squared px
2 �̂�𝑥

2 −ℎ2

4𝜋2
𝜕2

𝜕𝑥2

Kinetic energy 
𝑇 =

𝑃2

2𝑚

�̂�𝑥 −ℎ2

8𝜋2𝑚

𝜕2

𝜕𝑥2

Potential energy V(x) �̂�(𝑥) Multiplication by V(x) 

Total energy 𝐸 = 𝑇 + 𝑉(𝑥) �̂� −ℎ2

8𝜋2𝑚

𝜕2

𝜕𝑥2
+ 𝑉(𝑥) 

For three dimensional systems, the total operator can be obtained by summing the individual 
operators along three different axes. For instance, some important three-dimensional operators are: 

�̂� =
−ℎ2

8𝜋2𝑚
(
𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
+
𝜕2

𝜕𝑧2
) 

(4)

𝑝 ̂ =
ℎ

2𝜋𝑖
(
𝜕

𝜕𝑥
+
𝜕

𝜕𝑦
+
𝜕

𝜕𝑧
) 

(5) 

�̂� =
−ℎ2

8𝜋2𝑚
(
𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
+
𝜕2

𝜕𝑧2
) + 𝑉(𝑥, 𝑦, 𝑧) 

(6) 
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 The Third Postulate 

               If ψ is a well-behaved function for the given state of system and Â is a suitable operator for a 
particular physical property, then the operation on ψ by the operator Â gives the function ψ multiplied by the 
value of the physical property which can be constant or variable but always real (R). Mathematically, it can 
be shown as: 

  �̂�𝜓 = 𝑅𝜓 (7) 

Explanation: The third postulate of quantum mechanics actually connects the first and second postulate of 
quantum mechanics. The first postulate talks about the possibility of describing a quantum mechanical state 
mathematically, while the second postulate says that the values of all physical properties in the quantum world 
are obtained by the operator rather than the simple classical formula. Now the third postulate says that if we 
operate the operator (from second postulate) over the wave function (from first postulate), we will get the value 
of the corresponding physical property.  

               However, at this point, a new problem arises as we do not know the exact mathematical description 
i.e. the wave function of any quantum mechanical state; and the operators need the absolute mathematical 
description of the quantum mechanical state to yield any actual result. Now though we know the expressions 
of different operators proposed by the second postulate; the first postulate speaks only about the presence of a 
single-valued, continuous and finite mathematical function but does not give actual function itself; and without 
the knowledge of actual “wave functions”, the operators are pretty much useless.  Therefore, one would think 
that there must be some route by which the wave functions are obtained first, which would be used as operand 
afterward. However, the procedure to find the exact mathematical descriptions of various quantum mechanical 
states is somewhat more synergistic. The “magic mystery” is that all the operators need absolute expression of 
the wave function that defines the quantum mechanical state except one, the most famous “Hamiltonian 
operator”. The special thing about the Hamiltonian operator is that it does not necessarily need the absolute 
form but the symbolic form only to yield the value of its physical property i.e. energy. Nevertheless, in the 
process of applying the Hamiltonian operator over the symbolic form of the wave function, the absolute 
expression is also obtained. Mathematically, 

 �̂�𝜓 = 𝐸𝜓 (8) 

After putting the expression of the Hamiltonian operator in equation (8) and then rearranging, we get: 

 𝜕2𝜓

𝜕𝑥2
+
𝜕2𝜓

𝜕𝑦2
+
𝜕2𝜓

𝜕𝑧2
+
8𝜋2𝑚(𝐸 − 𝑉)𝜓

ℎ2
= 0 

(9) 

               The second-order differential equation i.e. equation (9) is the famous Schrodinger wave equation, the 
solution of which gives not only the energy but the wave function as well. Now, once the exact expression of 
the wave function representing a particular state is known, other operators can be operated over it to find their 
values. 
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 The Fourth Postulate

If the value of the physical property obtained after multiplying the wave function by the 
corresponding operator is constant (postulate 3), the value is called as the eigen-value and is directly 
reportable; and the wave function will be labeled as the eigen-function of the operator used. 

Explanation: The third postulate said that when the wave function of a particular quantum mechanical state 
is multiplied by the operator of an observable quantity, we get a real value multiplied by the wave function 
itself; however, the value obtained so can be constant or variable. Mathematically, 

The constant value of the observable quantity can be reported directly, and the function is called the 
eigenfunction of the operator under consideration. 

 The Fifth Postulate

If the value of the physical property obtained after multiplying the wave function by the 
corresponding operator is variable i.e. non-eigen, the value can be reported only after averaging it over the 
whole configurational space. 

< 𝑎 > 𝑜𝑟 ā =
∮𝜓∗�̂�𝜓 𝑑𝜏

∮𝜓∗𝜓 𝑑𝜏

(10) 

Explanation: As we have seen in the fourth postulate that the value obtained by multiplying the Hermitian 
operator with any quantum mechanical state can also be variable in nature. For instance, if we multiply a wave 
function simply by position operator, we will get 

𝑥𝜓 = 𝑥𝜓 (11) 

or 

Now because “x” is a variable number, it must have reported as an average value before any further rational 
argument is made.  

Therefore, we can say that the fifth postulate is simply an extension of the fourth postulate; i.e. the 
fourth postulate is used to obtain the value of a particular physical property if it is an eigenvalue, however, the 
fifth postulate is employed to calculate all non-eigenvalues. 

𝑥 =
𝑥𝜓

𝜓

(12) 
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 Derivation of Schrodinger Wave Equation
The Schrodinger wave equation can be derived from the classical wave equation as well as from the 

third postulate of quantum mechanics. Now though the two routes may appear completely different, the final 
result is just the same indicating the objectivity of the quantum mechanical system. 

 The Derivation of Schrodinger Wave Equation from Classical Wave Equation

After the failure of the Bohr atomic model to comply with the Heisenberg’s uncertainty principle and 
dual character proposed by Louis de Broglie in 1924, an Austrian physicist Erwin Schrodinger developed his 
legendary equation by making the use of wave-particle duality and classical wave equation. In order to 
understand the concept involved, consider a wave traveling in a string along the x-axis with velocity v. 

Figure 1. The wave motion in a string. 

It can be clearly seen that the amplitude of the wave at any time t is the function of displacement x, and the 
equation for wave motion can be formulated as given below. 

𝜕2𝑦

𝜕𝑥2
=
1

𝑣2
𝜕2𝑦

𝜕𝑡2
(13) 

Therefore, we can say that y is a function of x well at t. 

𝑦 = 𝑓(𝑥)𝑓′(𝑡) (14) 

Where f(x) and f´(t) are the functions of coordinate x and time, respectively. The nature of the function f(x) can 
be understood by taking the example of stationary or the standing wave.  

A standing wave is created in a string fixed between two points with a wave traveling in one direction, 
and when it strikes the other end, it gets reflected with the same velocity but in negative amplitude. This would 
create vibrations in that string with or without nodes depending upon the frequency incorporated. We can 
create fundamental mode (0 node), first overtone (1 node) or second overtone (2 nodes) just by changing the 
vibrational frequency. The nature of these standing or stationary waves can be understood more clearly by the 
diagram given below. 
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Figure 2. Standing waves in a string. 

The mathematical description for such a wave motion is 

𝑓′(𝑡) = 𝐴 sin 2𝜋𝜈𝑡 (15)

Where A is a constant representing maximum amplitude and ν is the frequency of the vibration. Now putting 
the value of f´(t) from equation (15) in equation (14), we get 

𝑦 = 𝑓(𝑥) 𝐴 𝑆𝑖𝑛 2𝜋𝜈𝑡 (16) 

Differentiating the above equation w.r.t. t, we are left with 

𝜕𝑦

𝜕𝑡
= 𝑓(𝑥) 𝐴2𝜋𝜈 𝐶𝑜𝑠 2𝜋𝜈𝑡 

(17) 

Differentiating again 

𝜕2𝑦

𝜕𝑡2
= −𝑓(𝑥) 4𝜋2𝜈2𝐴 𝑆𝑖𝑛 2𝜋𝜈𝑡

(18) 

𝜕2𝑦

𝜕𝑡2
= −4𝜋2𝜈2𝑓(𝑥) 𝑓′(𝑡)

(19) 

Now differentiating equation (14) w.r.t. x only, we get 

𝜕𝑦

𝜕𝑥
= 𝑓′(𝑡)

𝜕𝑓(𝑥)

𝜕𝑥

(20) 

Differentiating again 

𝜕2𝑦

𝜕𝑥2
= 𝑓′(𝑡)

𝜕2𝑓(𝑥)

𝜕𝑥2
(21) 

Now put the value of equation (19) and (21) in equation (13), we get 
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𝑓′(𝑡)

𝜕2𝑓(𝑥)

𝜕𝑥2
= (

1

𝑣2
) [−4𝜋2𝜈2𝑓(𝑥) 𝑓′(𝑡)] 

(22) 

 𝜕2𝑓(𝑥)

𝜕𝑥2
=
−4𝜋2𝜈2

𝑣2
𝑓(𝑥) 

(23) 

The equation (23) is now time-independent; and therefore, shows the amplitude dependence only upon the 
coordinate x. Since c = νλ (v = c/λ), the velocity of the wave can also be replaced by the multiplication of 
frequency and wavelength i.e. v = νλ. 

 𝜕2𝑓(𝑥)

𝜕𝑥2
=
−4𝜋2𝜈2

𝜈2𝜆2
𝑓(𝑥) 

(24) 

 𝜕2𝑓(𝑥)

𝜕𝑥2
=
−4𝜋2

𝜆2
𝑓(𝑥) 

(25) 

The symbol of the function f(x) is replaced by popular ψ(x) or simply the ψ. 

 𝜕2𝜓

𝜕𝑥2
=
−4𝜋2

𝜆2
𝜓 

(26) 

Also, as we know that λ=h/mv, the equation (26) becomes 

 𝜕2𝜓

𝜕𝑥2
=
−4𝜋2𝑚2𝑣2

ℎ2
𝜓 

(27) 

 𝜕2𝜓

𝜕𝑥2
+
4𝜋2𝑚2𝑣2

ℎ2
𝜓 = 0 

(28) 

Furthermore, as the total energy (E) is simply the sum of the potential (V) and kinetic energy, we can say that 

 
𝐸 =

𝑚𝑣2

2
+ 𝑉 

(29) 

 𝑚𝑣2 = 2(𝐸 − 𝑉) (30) 

After putting the value of mv2 from equation (30) in equation (28), we get 

 𝜕2𝜓

𝜕𝑥2
−
8𝜋2𝑚

ℎ2
(𝐸 − 𝑉)𝜓 = 0 

(31) 

For three-dimension i.e. ψ(x, y, z), the above equation can be extended to following 

 𝜕2𝜓

𝜕𝑥2
+
𝜕2𝜓

𝜕𝑦2
+
𝜕2𝜓

𝜕𝑧2
−
8𝜋2𝑚

ℎ2
(𝐸 − 𝑉)𝜓 = 0 

(32) 

The above-mentioned second order differential equation i.e. equation (32) is our popular form of the 
Schrodinger wave equation. 
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 The Derivation of Schrodinger Wave Equation from the Postulates of Quantum Mechanics

The Schrodinger wave equation can be derived using the first three postulates of quantum mechanics. 
In other words, we can say that the Schrodinger wave equation is nothing but the rearranged form of the 
following equation: 

�̂�𝜓 = 𝐸𝜓 (12) 

In order to prove the above claim, consider a single particle having “m” mass that moves with a velocity “v” 
in the three-dimensional region. The sum of its kinetic and potential energy can be given as: 

𝐸 = 𝑇 + 𝑉 (13) 

However, we know that 

𝑇 =
1

2
𝑚𝑣2 =

𝑝2

2𝑚

(14) 

Where “p” represents the total linear momentum of the particle under consideration. Furthermore, as we also 
know that  

𝑝2 = 𝑝𝑥
2 + 𝑝𝑦

2 + 𝑝𝑧
2 (15) 

Where px, py and pz are the magnitudes of total linear momentum along x, y and z-axis, respectively. Now 
putting the value of p2 from equation (15) into equation (14), we get the following 

𝑇 =
𝑝𝑥
2 + 𝑝𝑦

2 + 𝑝𝑧
2

2𝑚

(16) 

And now put the value of kinetic energy from equation (16) into equation (13). We get 

𝐸 =
𝑝𝑥
2 + 𝑝𝑦

2 + 𝑝𝑧
2

2𝑚
+ 𝑉 

(17) 

However, from the second postulate of quantum mechanics, we know that the expressions for linear 
momentum operator along three different directions are: 

𝑝�̂� =
ℎ

2𝜋𝑖

𝜕

𝜕𝑥

(18) 

𝑝�̂� =
ℎ

2𝜋𝑖

𝜕

𝜕𝑦

(19) 

𝑝�̂� =
ℎ

2𝜋𝑖

𝜕

𝜕𝑧

(20) 

The operator of “V” is simply itself as it is a function of position coordinates only. 
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Hence, after putting values of linear momentum operators and potential energy operator in equation (17), the 
operator for total energy (Hamiltonian operator) becomes 

 
�̂� =

1

2𝑚
[(
ℎ

2𝜋𝑖

𝜕

𝜕𝑥
)
2

+ (
ℎ

2𝜋𝑖

𝜕

𝜕𝑦
)
2

+ (
ℎ

2𝜋𝑖

𝜕

𝜕𝑧
)
2

] + 𝑉 
(21) 

 
�̂� = −

ℎ2

8𝜋2𝑚
(
𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
+
𝜕2

𝜕𝑧2
) + 𝑉 

(22) 

 
�̂� = −

ℎ2

8𝜋2𝑚
∇2 + 𝑉 

(23) 

Where 

∇2=
𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
+
𝜕2

𝜕𝑧2
 

represents the Laplacian operator. 

Now, after putting the value of Hamiltonian operator from equation (22) into equation (12) i.e. given by the 
third postulate of quantum mechanics, get 

 
[−

ℎ2

8𝜋2𝑚
(
𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
+
𝜕2

𝜕𝑧2
) + 𝑉]𝜓 = 𝐸𝜓 

(24) 

 
[−

ℎ2

8𝜋2𝑚
(
𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
+
𝜕2

𝜕𝑧2
) + 𝑉]𝜓 − 𝐸𝜓 = 0 

(25) 

 
−

ℎ2

8𝜋2𝑚

𝜕2𝜓

𝜕𝑥2
−

ℎ2

8𝜋2𝑚

𝜕2𝜓

𝜕𝑦2
−

ℎ2

8𝜋2𝑚

𝜕2𝜓

𝜕𝑧2
+ 𝑉𝜓 − 𝐸𝜓 = 0 

(26) 

Multiplying the equation (26) throughout by 

−
8𝜋2𝑚

ℎ2
 

we get 

 𝜕2𝜓

𝜕𝑥2
+
𝜕2𝜓

𝜕𝑦2
+
𝜕2𝜓

𝜕𝑧2
−
8𝜋2𝑚

ℎ2
𝑉𝜓 +

8𝜋2𝑚

ℎ2
𝐸𝜓 = 0 

(27) 

 𝜕2𝜓

𝜕𝑥2
+
𝜕2𝜓

𝜕𝑦2
+
𝜕2𝜓

𝜕𝑧2
+
8𝜋2𝑚

ℎ2
(𝐸 − 𝑉)𝜓 = 0 

(28) 

Equation (28) is the most popular form of the Schrodinger wave equation for three dimensional systems. In 
the case of two and one dimensional systems first three terms can be reduced to two and one, respectively. 
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 Max-Born Interpretation of Wave Functions
In 1926, a German physicist Max Born formulated a rule which is generally called as the Born law 

or Born's rule of quantum mechanics, giving the probability that a measurement on a quantum system will 
yield a given result. In other words, it states that the probability density of finding the particle at a given point 
is proportional to the square of the magnitude of the particle's wavefunction at that point. The Max-Born 
interpretation is one of the key concepts of quantum mechanics to understand wave-particle duality. 

Let us suppose that the particle under consideration is an electron whose way of existence is 
represented by a mathematical expression ψ which is a function of the electron’s coordinates i.e. x, y, and z. 
Max Born actually suggested that because this mathematical expression is single-valued, continuous and finite 
i.e. wave-like; one can opt the same route to find it’s intensity as we use in case of light or sound waves. In the 
case of light or sound waves, the intensity at any point can simply be obtained by squaring the amplitude i.e. 
ψ of the wave at the same point. Therefore, in the case of the electron, the square of the amplitude of electron 
wave (ψ2) at a particular point also gives the intensity of the electron wave at the same point. In other words, 
the density of electron wave (probability density) at a point for a quantum mechanical state is simply obtained 
by the square of the magnitude of the corresponding wavefunction at the same point. Mathematically, we can 
show this as: 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = |𝜓|2 = 𝜓𝜓∗ (29) 

Where ψ* designates a complex conjugate of the wave function ψ. The reason for using ψ* lies in the fact that 
the wave function representing a quantum mechanical state is not always real but be imaginary as well. 
However, as the probability density should always be real, ψψ* is more appropriate than simple ψ2. In other 
words, if the wave function defining the quantum mechanical state is real, we can use ψ2 as the probability 
density; nevertheless, if the wave function does contain the imaginary part (like ψ = a + ib), ψψ* must be used 
to yield real values. This can be explained by taking an imaginary expression ψ and then multiplying it by its 
complex conjugate ψ* to yield real value. 

𝜓 = 𝑎 + 𝑖𝑏;  𝜓∗ = 𝑎 − 𝑖𝑏 (30) 

or 

𝜓𝜓∗ = (𝑎 + 𝑖𝑏)  ×  (𝑎 − 𝑖𝑏) (31) 

or 

𝜓𝜓∗ = 𝑎2 + 𝑏2 (32) 

Moreover, if ψ is real, ψ = ψ*, ψψ* becomes ψ2, the value we have already discussed. 

Now though the probability density in space is not a constant parameter (ψ is not constant), in a very 
small segment it can be considered constant. Now let us discuss the Max-Born interpretation for one, two and 
three dimensional systems. 
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 One Dimensional Systems 

               The probability of finding the particle in any one-dimensional system in the region from x to x+dx 
must be obtained by integrating ψ2 from x to x+dx i.e. by finding the area under the curve from x to x+dx. 

               Now although the ψ2 or ψψ* (because ψ is continuous) varies continuously with x, the decrease or 
increase in ψ2 can be neglected and it can be assumed that it remains constant as we move from x to x+dx. 

 

Figure 3. Born interpretation of wave function and probability density in a one-dimensional system. 

 

Therefore, the area of the shaded region and hence the probability of finding the particle can be obtained just 
by multiplying the length (or height i.e. ψ2) with the width (dx) of the narrow rectangle. Thus we can say that 

 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = |𝜓|2 × (𝑑𝑥) = 𝜓𝜓∗𝑑𝑥 = 𝜓2𝑑𝑥 (33) 

Since the chances of finding the particle over whole length (whole configurational space) must be unity, we 
get the following 

 
∮|𝜓|2 × (𝑑𝑥) = ∮𝜓𝜓∗𝑑𝑥 =∮𝜓2𝑑𝑥 (34) 

 Two Dimensional Systems 

               The probability of finding the particle in an area element dx dy (dA), situated at a distance r distance 
from the center, would be ψ (x, y) × ψ* (x, y) × dx × dy; or in short can be written as ψψ*dA. Hence, it must be 
obtained by integrating ψ2 from (x, y) to (x+dx, y+dy) i.e. by finding the area under the curve dA. Now although 
the ψ2 or ψψ* (because ψ is continuous) varies continuously with coordinates (x y), the decrease or increase in 
ψ2 can be neglected and it can be assumed that it remains constant as we move from (x, y) to (x+dx, y+dy). 

               Therefore, the area of the shaded region and hence the probability of finding the particle can be 
obtained just by multiplying the magnitude of the wave function (ψ2) with the area (dA) of the area element. 
Thus we can say that 

Buy the complete book with TOC navigation, 
high resolution images and 

no watermark.

https://www.dalalinstitute.com/books/a-textbook-of-physical-chemistry-volume-1/


CHAPTER 1 Quantum Mechanics – I 23 

 Copyright © Mandeep Dalal  

 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = |𝜓|2 × (𝑑𝐴) = 𝜓𝜓∗𝑑𝐴 = 𝜓2𝑑𝐴 (35) 

Since the chances of finding the particle over the whole area (whole configurational space) must be unity, we 
get the following 

 
∮|𝜓|2 × (𝑑𝐴) = ∮𝜓𝜓∗𝑑𝐴 =∮𝜓2𝑑𝐴 (36) 

The pictorial representation of the area element is given below. 

 

Figure 2. Born interpretation of wave function and probability density in two dimensional systems. 

 

 Three Dimensional System 

               The probability of finding the particle in a volume element dx dy dz (dV), situated at a distance r 
distance from the center, would be ψ (x, y, z) × ψ* (x, y, z) × dx × dy× dz; or in short can be written as ψψ*dV. 
must be obtained by integrating ψ2 from (x, y, z) to (x+dx, y+dy, z+dz) i.e. by finding the area under the curve 
from (x, y, z) to (x+dx, y+dy, z+dz). Now although the ψ2 or ψψ* (because ψ is continuous) varies continuously 
with coordinates (x, y, z), the decrease or increase in ψ2 can neglected and it can be assumed that it remains 
constant as we move from (x, y, z) to (x+dx, y+dy, z+dz). 

               Therefore, the probability of finding the particle can be obtained just by multiplying the magnitude 
of the wave function (ψ2) with the volume (dV) of the area element. Thus we can say that 

 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = |𝜓|2 × (𝑑𝑉) = 𝜓𝜓∗𝑑𝑉 = 𝜓2𝑑𝑉 (35) 

Since the chances of finding the particle over the whole area (whole configurational space) must be unity, we 
get the following 

 
∮|𝜓|2 × (𝑑𝑉) = ∮𝜓𝜓∗𝑑𝑉 =∮𝜓2𝑑𝑉 (36) 

The pictorial representation of the area element is given below. 

Buy the complete book with TOC navigation, 
high resolution images and 

no watermark.

https://www.dalalinstitute.com/books/a-textbook-of-physical-chemistry-volume-1/


24 A Textbook of Physical Chemistry – Volume I 

Copyright © Mandeep Dalal

Figure 3. Born interpretation of wave function and probability density in three dimensional systems. 

 The Heisenberg’s Uncertainty Principle
In quantum mechanical world, the Heisenberg's uncertainty principle (or simply the uncertainty 

principle) is one of a variety of mathematical inequalities asserting a fundamental limit to the precision with 
which certain pairs of physical properties of a particle, known as complementary variables or canonically 
conjugate variables such as position x and momentum p, can be known. The concept was first introduced in 
1927, by a German physicist Werner Heisenberg.  

          The Heisenberg’s uncertainty principle states that the more precisely the position of some particle is 
determined, the less precisely its momentum can be known, and vice versa. 

The formal inequality relating the standard deviation of position Δx and the standard deviation of 
momentum Δpx was derived by Earle Hesse Kennard later that year and by Hermann Weyl in 1928: 

Δ𝑥. Δ𝑝𝑥 ≥
ℎ

4𝜋

(37) 

or 

Δx . Δpx ≥ ħ/2 (38) 

Where ħ is the reduced Planck’s constant, which is obviously equal to the Planck’s constant divided by 2π. 
Besides the equation (37), the is also an energy-time uncertainty relation given by W. Heisenberg which states 
that higher the lifetime of a quantum mechanical state, less uncertain would be the energy value. 
Mathematically, it can be shown as: 

Δ𝐸. Δ𝑡 ≥
ℎ

2𝜋

(39) 

Where ΔE and Δt represent the uncertainties in the energy and time respectively. 
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 Position Momentum Uncertainty 

               Among various kinds of uncertainties, the position-momentum uncertainty is one of the popular kind 
that arises as a consequence of wave-particle duality. In order to understand the relation, we first need to study 
the effect of wave behavior on the simultaneous measurement of position about x-coordinate and the linear 
momentum component along the x-axis for a microscopic particle. 

               Consider a beam of particles traveling with a momentum “p” along the y-direction, and this beam 
finally strikes a narrow slit of width “w”. Now, from the principles of optics, we know that the uncertainty in 
the position of the particle along x-axis must be equal to the slit width. In other words, as the width of the slit 
is along x-axis, any particle that strikes the detector must have crossed the Δx region i.e. w, the slit width 
available. However, we exactly don’t know where it does cross from. It could be along the center of the slit, 
or along a line slightly above or below the central trajectory. Therefore, the slit width (w = Δx) would be equal 
to a crossing domain that we are uncertain about. However, a diffraction pattern will be observed in the case 
of microscopic particles because of their wave-like character. The amplitude of the wave at a particular point 
on the detector represents the number of the particles reaching that point. Now because of this diffraction, the 
incident beam does not strike only at the central point O but also at the above and below to it. It means that 
some particles do reach upward and downward to O, suggesting that the part of their linear momentum is 
transferred along x-axis also. 

 

Figure 4. The diffraction of electron waves by single slit systems. 
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The x-component of linear momentum of the wave (aka particle) diffracted at an angle α can be obtained by 
the rectangular resolution of the linear momentum vector. The particles diffracted upward and downward at 
an angle α will yield the x-component as P sinα and −P sinα, respectively. Now because a large number of 
particles reach the plate in between +α to −α i.e in between the first minimums, half of the momentum spread 
in the central diffraction peak should give the uncertainty in the momentum along x-axis. Mathematically, we 
can say that 

 ∆𝑝𝑥 = 𝑃 𝑠𝑖𝑛𝛼 (40) 

Multiplying the above equation by the uncertainty in the position i.e. width of the slit used for the measurement 
purpose, we get 

 ∆𝑥. ∆𝑝𝑥 = 𝑤. 𝑃 𝑠𝑖𝑛𝛼 (41) 

Here, it is very important to recall the fact that the condition which must be satisfied to obtain the first minima 
is that the path difference between the waves reaching the minima point should be an integral multiple of λ/2. 

 

Figure 5. The calculation for 1st order diffraction for electron wave in single slit systems. 

 

Hence we have the following equalities from the diagram given above. 

 𝐴𝑄 = 𝐷𝑄 (42) 

 𝐶𝑄 = 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑎𝑡ℎ 𝑙𝑒𝑛𝑔𝑡ℎ (43) 

Now because the distance of the detector is very large as compared to the slit width, AQ and CQ can be 
considered parallel to each other i.e. AQ ‖ DQ. Hence, we can say that 
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 < 𝐴𝐷𝐶 = 90° (44) 

 < 𝐶𝐴𝐷 = 𝛼 (45) 

also 

 𝐴𝐶 =
𝑤

2
 (46) 

 
𝐶𝐷 =

𝜆

2
 

(47) 

From the trigonometric relations, we get 

 𝐶𝐷

𝐴𝐶
= 𝑆𝑖𝑛 𝛼 (48) 

 𝐶𝐷 = 𝐴𝐶 𝑆𝑖𝑛 𝛼 (49) 

Putting the values of AC and CD from equation (46) and (47) in equation (49), we get 

 𝜆

2
=
𝑤

2
 𝑆𝑖𝑛 𝛼 

(50) 

 𝜆 = 𝑤 𝑆𝑖𝑛 𝛼 (51) 

Now, after putting the value of w from equation (51) in equation (41), we get 

 
∆𝑥. ∆𝑝𝑥 =

𝜆

𝑆𝑖𝑛 𝛼
. 𝑃 𝑠𝑖𝑛𝛼 

(52) 

 ∆𝑥. ∆𝑝𝑥 = 𝜆. 𝑃 (53) 

Using the de Broglie relation (λ = h/p) in equation (53), we get 

 
∆𝑥. ∆𝑝𝑥 =

ℎ

𝑃
. 𝑃 

(54) 

 ∆𝑥. ∆𝑝𝑥 = ℎ (55) 

Now because we didn’t define the uncertainty very precisely, we should not use the “equal” sign. Therefore, 
the above equation can be reduced to the following. 

 ∆𝑥. ∆𝑝𝑥 ≈ ℎ (56) 

This eventually means that decreasing the uncertainty in the position of the incident particle (decreasing the 
slit width) would result in a higher uncertainty in the momentum along x-axis; while the higher slit width does 
give more precise momentum but small precision in the calculation of the position of the incident particle. 
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  Energy Time Uncertainty 

               The uncertainty principle doesn’t limit itself to position-momentum only but can also be applied to 
some other pairs of conjugate variables. All the variable pairs whose products have the same dimension as the 
Plank’s constant h (Js) are said to be a conjugate pair. Besides the position-momentum, another famous 
uncertainty is relation energy-time because the product of these two quantities (energy × time) also has the 
unit of h (Js).  

 ∆𝐸. ∆𝑡 ≈ ℎ (57) 

Where ΔE and Δt are uncertainties in energy and time, respectively. This popular relation can be derived 
directly from the concept of wave-particle duality. In the quantum mechanical world, a particle is supposed to 
possess a wave packet. Now, let us consider that this wave packet occupies the Δx region along the direction 
x-direction and travels with a velocity v. The time it needs to pass a certain point in x-direction has an 
uncertainty magnitude of Δt, and can be formulated as: 

 
∆𝑡 =

Δ𝑥

𝑣
 (58) 

Now because this wave packet occupies the region Δx, the momentum uncertainty along x-axis can be given 
by the following relation. 

 
∆𝑝𝑥 =

ℎ

Δ𝑥
 

(59) 

or 

 
Δ𝑥 =

ℎ

∆𝑝𝑥
 

(60) 

Putting the value of Δx from equation (60) in equation (58), we get 

 
∆𝑡 =

ℎ

𝑣Δ𝑝𝑥
 

(61) 

Moreover, we also know that  

 
𝐸 =

𝑝𝑥
2

2𝑚
 

(62) 

Differentiating the above equation w.r.t px, we get 

 𝑑𝐸

𝑑𝑝𝑥
=
∆𝐸

∆𝑝𝑥
=
𝑝𝑥
𝑚
=
𝑚𝑣

𝑚
= 𝑣 

(63) 

 
∆𝐸 =

𝑑𝐸

𝑑𝑝𝑥
∆𝑝𝑥 = 𝑣. ∆𝑝𝑥 

(64) 
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Multiplying equation (63) and (64), we get 

∆𝐸. ∆𝑡 = 𝑣∆𝑝𝑥  .
ℎ

𝑣Δ𝑝𝑥

(65) 

∆𝐸. ∆𝑡 ≈ ℎ (66) 

The physical interpretation of the above relation can be viewed in terms of fluctuating energy level with a total 
ΔE uncertainty if the system does not stay in it longer than Δt interval of time i.e. lifetime of the state. 

 Quantum Mechanical Operators and Their Commutation Relations
An operator may be simply defined as a mathematical procedure or instruction which is carried out 

over a function to yield another function. 

(Operator) . (Function) = (Another function) (67) 

The function used on the left-hand side of the equation (67) is called as the operand i.e. the function 
over which the operation is actually carried out. The operator alone has no significance but when operated over 
a certain mathematical description, these operators can provide very detailed insights into those functions. 
Some of the simple illustrations of equation (67) are given below. 

i) Consider the differential operator d/dx whose operation has to be studied over the function y = x5. The
mathematical treatment is 

𝑑𝑦

𝑑𝑥
=
𝑑

𝑑𝑥
𝑥5 = 5𝑥4

(68) 

The operation of d/dx on y means that the rate of change of function y w.r.t. the variable x. The expression x5 
is the operand while the 5x4 is the final result of our differential operator. 

ii) Consider the integral operator ʃ (y) dx whose operation has to be studied over the function y = x5. The
mathematical treatment is 

∫𝑦(𝑑𝑥) = ∫𝑥5(𝑑𝑥) =
𝑥6

6

(69) 

The operation of ʃdx on y means that we can find the function whose derivative is x5. The expression x5 is the 
operand while the x6/6 is the final result of our integral operator. 

In a similar way, the multiplication of a function by a constant number, or taking the square and cube 
roots of any function are also the operators which give some other function after operating them over the 
operand. The symbol of the operator typically carries a cap over it (Â) which differentiates it from the function 
used in the whole procedure. 
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 Algebra of Operators 

               Just like the normal algebra, the resultants like addition or the multiplication of operators also follow 
certain rules; however, these rules are different from the typical algebra. Some of the most important rules of 
operator algebra are given below. 

1. Addition and subtraction of operators: Let A and B as two different operators; f as the function that has 
to be used as the operand. Then, the addition and subtraction of these two operators must be carried out in the 
manner discussed below.  

 (�̂� + �̂�)𝑓 = �̂�𝑓 + �̂�𝑓 (70) 

and 

 (�̂� − �̂�)𝑓 = �̂�𝑓 − �̂�𝑓 (71) 

2. Multiplication of operators: If A and B as two different operators; and f as the function that has to be used 
as operand. Then, the multiplication of these two operators must be carried out in the manner discussed below.  

 �̂��̂�𝑓 = 𝑓′′ (72) 

The interpretation of the above equation is that first we need to operate B on f, which would give us another 
function f´, which in turn is further used as the operand for operator giving the final result fʺ. In other words, 
we can say that when multiplication of two or more operators is used, we should follow from left to right. 
Moreover, the square or cube of a particular operator must be considered as double or triple multiplication of 
the operator itself; mathematically, it can be shown as given below. 

 �̂�2𝑓 = �̂��̂�𝑓 (73) 

               At this point it also very important to discuss one of the most fundamental properties of operator 
multiplication, the commutation relation or the commutation rule. Consider two operators, A and B which can 
be operated over the function f. 

 
�̂� =

𝑑

𝑑𝑥
;    �̂� = 𝑥;     𝑓 = 𝑥3 

(74) 

Now  

 
�̂��̂�𝑓 =

𝑑

𝑑𝑥
𝑥(𝑥3) =

𝑑

𝑑𝑥
𝑥4 = 4𝑥3 

(75) 

And 

 
�̂��̂�𝑓 = 𝑥

𝑑

𝑑𝑥
(𝑥3) = 𝑥(3𝑥2) = 3𝑥3 

(76) 

From equation (75) and (76), it the clear that in this case 
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 �̂��̂�𝑓 ≠ �̂��̂�𝑓 (77) 

These operators are said to be non-commutating with the commutator given below. 

 �̂��̂� − �̂��̂� = 4𝑥3 − 3𝑥3 (78) 

However, the two operators are said to be commute if their result is the same even after reverting their order 
of application. Mathematically, it can be stated as given by equation (79). 

 �̂��̂�𝑓 = �̂��̂�𝑓 (79) 

This is quite different from the normal algebra in which the product of two numbers is always the same 
irrespective of the order of multiplication (x.y = y.x). Summarizing the commutation rule, it can be concluded 
that  

 [𝐴,̂ �̂�] = �̂��̂� − �̂��̂� = 0 → 𝐶𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑖𝑛𝑔 (80) 

and 

 [𝐴,̂ �̂�] = �̂��̂� − �̂��̂� ≠ 0 → 𝑁𝑜𝑛-𝑐𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑖𝑛𝑔 (81) 

3. Linear Operator: An operator Â is said to be a linear operator if its application on the sum of two functions 
f and g gives the same result as the sum of its individual operations. Mathematically, it can be shown as given 
below. 

 �̂�(𝑓 + 𝑔) = �̂�𝑓 + �̂�𝑔 (82) 

For example, consider the differential operator A; with f and g as the functions which have to be used as the 
operand. 

 
�̂� =

𝑑

𝑑𝑥
;     𝑓 = 2𝑥2;     𝑔 = 3𝑥2 

(83) 

or 

 
�̂�(𝑓 + 𝑔) =

𝑑

𝑑𝑥
(2𝑥2 + 3𝑥2) =

𝑑

𝑑𝑥
(5𝑥2) = 10𝑥 

(84) 

or 

 
�̂�𝑓 + �̂�𝑔 =

𝑑

𝑑𝑥
(2𝑥2) +

𝑑

𝑑𝑥
(3𝑥2) = 4𝑥 + 6𝑥 = 10𝑥 

(85) 

               Hence, from equation (84) and equation (85), it is clear that the differential operator is clearly linear 
in nature. On the other hand, the “square root” operator is not linear as it does not give the same result when 
operated individually. 
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 Some Important Quantum Mechanical Operators 

               One of the most basic and very popular operators in quantum mechanics is the Laplacian operator, 
typically symbolized as ∇2, and is given by the following expression. 

 
∇2=

𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
+
𝜕2

𝜕𝑧2
 

(86) 

The popular form of the Schrodinger equation can be written in terms of Laplacian operator as well. 

 𝜕2𝜓

𝜕𝑥2
+
𝜕2𝜓

𝜕𝑦2
+
𝜕2𝜓

𝜕𝑧2
+
8𝜋2𝑚

ℎ2
(𝐸 − 𝑉)𝜓 = 0 

(87) 

or 

 
∇2𝜓 +

8𝜋2𝑚

ℎ2
(𝐸 − 𝑉)𝜓 = 0 

(88) 

The Laplacian operator is pronounced as “del squared”. This operator is also a part of the “mighty” 
Hamiltonian operator which forms the basis for value evaluation for other operators, as we have already 
discussed in the postulates of quantum mechanics. The Hamiltonian operator is typically symbolized as �̂� and 

is given by the following expression. 

 
�̂� = −

ℎ2

8𝜋2𝑚
(
𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
+
𝜕2

𝜕𝑧2
) + 𝑉 

(89) 

or 

 
�̂� = −

ℎ2

8𝜋2𝑚
∇2 + 𝑉 

(90) 

The popular form of the Schrodinger equation is written in terms of the Hamiltonian operator as well. 

 �̂�𝜓 = 𝐸𝜓 (91) 

or 

 
[−

ℎ2

8𝜋2𝑚
(
𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
+
𝜕2

𝜕𝑧2
) + 𝑉]𝜓 = 𝐸𝜓 

(92) 

or 

 
(−

ℎ2

8𝜋2𝑚
∇2 + 𝑉)𝜓 = 𝐸𝜓 

(93) 

Furthermore, we know from the third postulate of quantum mechanics that owing to the constant value of E 
(eigenvalue) the wave function ψ can be labeled as eigenfunction. 
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Therefore, the Schrodinger equation is also called as the “eigen value equation”. Simplifying this, we can say 
that  

 (𝐸𝑛𝑒𝑟𝑔𝑦 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟)(𝑊𝑎𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛) = (𝐸𝑛𝑒𝑟𝑔𝑦)(𝑊𝑎𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛) (94) 

The equation (94) is applicable to observables in the quantum mechanical world. 

               For three dimensional systems, like the Hamiltonian, the operator can be obtained by summing the 
individual operators along three different axes. For instance, some important three-dimensional operators are: 

 
�̂� =

−ℎ2

8𝜋2𝑚
(
𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
+
𝜕2

𝜕𝑧2
) 

(95) 

 
𝑝 ̂ =

ℎ

2𝜋𝑖
(
𝜕

𝜕𝑥
+
𝜕

𝜕𝑦
+
𝜕

𝜕𝑧
) 

(96) 

The list of various important quantum mechanical operators in one dimension, along with their mode of 
operation is given below. 

Table 2. Name and symbols of various important physical properties and their corresponding quantum 
mechanical operators. 

Physical property Operator 

Name Symbol Symbol Operation 

Position x 𝑥 Multiplication by x 

Position squared x2 𝑥2 Multiplication by x2 

Position cubed x3 𝑥2 Multiplication by x3 

Momentum px �̂�𝑥 ℎ

2𝜋𝑖

𝜕

𝜕𝑥
 

Momentum squared px
2 �̂�𝑥

2 −ℎ2

4𝜋2
𝜕2

𝜕𝑥2
 

Kinetic energy 
𝑇 =

𝑃2

2𝑚
 

�̂�𝑥 −ℎ2

8𝜋2𝑚

𝜕2

𝜕𝑥2
 

Potential energy V(x) �̂�(𝑥) Multiplication by V(x) 

Total energy 𝐸 = 𝑇 + 𝑉(𝑥) �̂� −ℎ2

8𝜋2𝑚

𝜕2

𝜕𝑥2
+ 𝑉(𝑥) 
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               Besides the record of different operators presented in ‘Table 2’, there still many operators which are 
extremely important like angular momentum, parity, or the step-up–step-down operators. The discussion of 
every operator is beyond the scope of this book; however, a brief discussion of the essential operators in 
quantum mechanics is given below. 

1. Angular momentum operator: In order to understand the angular momentum operator in the quantum 
mechanical world, we first need to understand the classical mechanics of one particle angular momentum. Let 
us consider a particle of mass m which moves within a cartesian coordinate system with a position vector “r”. 
Hence, we can say that 

 𝑟 = 𝑖𝑥 + 𝑗𝑦 + 𝑘𝑧 (97) 

The coordinates x. y and z are the functions of time, and therefore, we can define the velocity as the time 
derivative of the position vector as given below. 

 
𝑣 =

𝑑𝑟

𝑑𝑡
= 𝑖
𝑑𝑥

𝑑𝑡
+ 𝑗
𝑑𝑦

𝑑𝑡
+ 𝑘

𝑑𝑧

𝑑𝑡
 

(98) 

or 

 𝑣 = 𝑣𝑥 + 𝑣𝑦 + 𝑣𝑧 (99) 

Now, since we that p = mv, we can say that 

 𝑝𝑥 = 𝑚𝑣𝑥;    𝑝𝑦 = 𝑚𝑣𝑦;     𝑝𝑧 = 𝑚𝑣𝑧 (100) 

The angular momentum of a particle with mass m and distance r from the origin is given by the following 
relation. 

 

Figure 6. The angular momentum vector. 

 

 �⃗� = 𝑣 × 𝑚 × 𝑟  (101) 
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 �⃗� = 𝑝 × 𝑟  (102) 

Equation (102) can also be written in the form of a matrix as: 

 
𝐿 = [

𝑖 𝑗 𝑘
𝑥 𝑦 𝑧
𝑝𝑥 𝑝𝑦 𝑝𝑧

] 
(103) 

 𝐿𝑥 = 𝑦𝑝𝑧 − 𝑧𝑝𝑦;     𝐿𝑦 = 𝑧𝑝𝑥 − 𝑥𝑝𝑧;    𝐿𝑧 = 𝑥𝑝𝑦 − 𝑦𝑝𝑥 (104) 

Where i, j, k are the unit vectors along x, y, z axis and Lx, Ly, Lz are the component of angular momentum along 
x, y, z axis. Moreover, it is also worthy to note that the angular momentum vector is always perpendicular to 
the direction of the position vector of the particle i.e. the plane in which the particle is moving. 

               Now since the mathematical nature of any quantum mechanical operator is dependent upon the 
classical expression of the same observable, the angular momentum is not any exception. The quantum 
mechanical operator for angular momentum is given below. 

 
�̂� = −𝑖

ℎ

2𝜋
(𝑟 × ∇) = −𝑖ħ(𝑟 × ∇) 

(105) 

The angular momentum can be divided into two categories; one is orbital angular momentum (due to the orbital 
motion of the particle) and the other is spin angular momentum (due to spin motion of the particle). Moreover, 
being a vector quantity, the operator of angular momentum can also be resolved along different axes. 

 �̂� = �̂�𝑥 + �̂�𝑦 + �̂�𝑧 (106) 

And we know that 

 
�̂�𝑥 = 𝑦𝑝𝑧 − 𝑧𝑝𝑦 = 𝑦 (

ℎ

2𝜋𝑖

𝜕

𝜕𝑧
) − 𝑧 (

ℎ

2𝜋𝑖

𝜕

𝜕𝑦
) =

ℎ

2𝜋𝑖
(𝑦
𝜕

𝜕𝑧
− 𝑧

𝜕

𝜕𝑦
) 

(107) 

or 

 
�̂�𝑦 = 𝑧𝑝𝑥 − 𝑥𝑝𝑧 = 𝑧 (

ℎ

2𝜋𝑖

𝜕

𝜕𝑥
) − 𝑥 (

ℎ

2𝜋𝑖

𝜕

𝜕𝑧
) =

ℎ

2𝜋𝑖
(𝑧
𝜕

𝜕𝑥
− 𝑥

𝜕

𝜕𝑧
) 

(108) 

or 

 
�̂�𝑧 = 𝑥𝑝𝑦 − 𝑦𝑝𝑥 = 𝑥 (

ℎ

2𝜋𝑖

𝜕

𝜕𝑦
) − 𝑦 (

ℎ

2𝜋𝑖

𝜕

𝜕𝑥
) =

ℎ

2𝜋𝑖
(𝑥
𝜕

𝜕𝑦
− 𝑦

𝜕

𝜕𝑥
) 

(109) 

 
�̂� =

ℎ

2𝜋𝑖
[(𝑦

𝜕

𝜕𝑧
− 𝑧

𝜕

𝜕𝑦
) + (𝑧

𝜕

𝜕𝑥
− 𝑥

𝜕

𝜕𝑧
) + (𝑥

𝜕

𝜕𝑦
− 𝑦

𝜕

𝜕𝑥
)] 

(110) 

It is also worthy to recall that equation (107) to (110) can also be reported in terms of ħ; or by multiplying and 
dividing by i, or both. 
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2. Ladder operator: These operators are also called as step-up–step-down or rising-lowering operators. The 
reason for such terminology lies in the fact that these operators can increase or decrease the eigenvalues. 
Moreover, it should also be noted that this increase or decrease is always quantized in nature. 

 𝐽+̂ = 𝐽�̂� + 𝑖𝐽�̂� (111) 

and 

 𝐽+̂ = 𝐽�̂� − 𝑖𝐽�̂� (112) 

The equation (111) and (112) represent the step-up and step-down operators respectively. These operators can 
be used to increase or decrease the eigen values. 

 Operator Evaluation 

               The operator evaluation simply means that we need to find the result by applying the operator over a 
given function. Some general examples are given below. 

i) (d/dx) (x5): In this case d/dx is the operator while the function x5 is the operand. 

 𝑑

𝑑𝑥
𝑥5 = 5𝑥4 

(113) 

ii) ʃ(x5): In this case, ʃ is the operator while the function x5 is the operand. 

 
∫𝑥5 =

𝑥6

6
 

(114) 

iii) (d2/dt2) (ASine 2πνt): In this particular case, (d2/dt2) is the operator while the function (A Sin 2πνt) is the 
operand. 

Let the function is symbolized by y. Then, we have  

 𝑦 = 𝐴 𝑆𝑖𝑛 2𝜋𝜈𝑡 (115) 

Differentiating with respect to t, we get 

 𝑑𝑦

𝑑𝑡
= 𝐴 2𝜋𝜈 𝐶𝑜𝑠 2𝜋𝜈𝑡 

(116) 

Differentiating again 

 𝑑2𝑦

𝑑𝑡2
= −𝐴 4𝜋2𝜈2 𝑆𝑖𝑛 2𝜋𝜈𝑡 

(117) 

               The operator evaluation is frequently used as a part of the commutator calculation and will be 
discussed in detail in this chapter. 
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 Calculation of Resultant Operator 

               Sometimes the operator is simplified to another form which is easy to apply over a function. This 
resultant operator is obtained by the rules of operator algebra. For instance, consider the following cases. 

i) Find the resultant expression for the following operator  

 
(
𝑑

𝑑𝑥
𝑥)
2

 
(118) 

In order to find the resultant operator, suppose a function ψ(x) which is used as an operand, then we can say 

 
(
𝑑

𝑑𝑥
𝑥)
2

𝜓 = (
𝑑

𝑑𝑥
𝑥) (

𝑑

𝑑𝑥
𝑥)𝜓 

(119) 

or 

 
(
𝑑

𝑑𝑥
𝑥)
2

𝜓 = (
𝑑

𝑑𝑥
𝑥) (

𝑑

𝑑𝑥
𝑥𝜓) 

(120) 

or 

 
(
𝑑

𝑑𝑥
𝑥)
2

𝜓 = (
𝑑

𝑑𝑥
𝑥) (𝑥

𝑑𝜓

𝑑𝑥
+ 𝜓

𝑑𝑥

𝑑𝑥
) 

(121) 

 
(
𝑑

𝑑𝑥
𝑥)
2

𝜓 =
𝑑

𝑑𝑥
(𝑥2

𝑑𝜓

𝑑𝑥
+ 𝑥𝜓) 

(122) 

 
(
𝑑

𝑑𝑥
𝑥)
2

𝜓 = [𝑥2
𝑑2𝜓

𝑑𝑥2
+
𝑑𝜓

𝑑𝑥
(2𝑥)] + [𝑥

𝑑𝜓

𝑑𝑥
+ 𝜓

𝑑𝑥

𝑑𝑥
] 

(123) 

 
(
𝑑

𝑑𝑥
𝑥)
2

𝜓 = 𝑥2
𝑑2𝜓

𝑑𝑥2
+ 2𝑥

𝑑𝜓

𝑑𝑥
+ 𝑥

𝑑𝜓

𝑑𝑥
+ 𝜓 

(124) 

 
(
𝑑

𝑑𝑥
𝑥)
2

𝜓 = [𝑥2
𝑑2

𝑑𝑥2
+ 3𝑥

𝑑

𝑑𝑥
+ 1]𝜓 

(125) 

Removing ψ from both sides, we get 

 
(
𝑑

𝑑𝑥
𝑥)
2

= 𝑥2
𝑑2

𝑑𝑥2
+ 3𝑥

𝑑

𝑑𝑥
+ 1 

(126) 

ii) Find the resultant expression for the following operator  

 
(𝑥 +

𝑑

𝑑𝑥
)
𝑑

𝑑𝑥
 

(127) 

In order to find the resultant operator, suppose a function ψ(x) which is used as operand, then we can say that 
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[(𝑥 +

𝑑

𝑑𝑥
)
𝑑

𝑑𝑥
]𝜓 = (𝑥 +

𝑑

𝑑𝑥
)
𝑑𝜓

𝑑𝑥
 

(128) 

 
[(𝑥 +

𝑑

𝑑𝑥
)
𝑑

𝑑𝑥
]𝜓 = 𝑥

𝑑𝜓

𝑑𝑥
+
𝑑2𝜓

𝑑𝑥2
 

 

Removing ψ from both sides, we get 

 
(𝑥 +

𝑑

𝑑𝑥
)
𝑑

𝑑𝑥
= 𝑥

𝑑

𝑑𝑥
+
𝑑2

𝑑𝑥2
 

(129) 

iii) Find the resultant expression for the following operator 

 
(
𝑑

𝑑𝑥
+ 𝑥)

2

 
(130) 

In order to find the resultant operator, suppose a function ψ(x) which is used as operand, then we can say that 

 
[(
𝑑

𝑑𝑥
+ 𝑥)

2

]𝜓 = [(
𝑑

𝑑𝑥
+ 𝑥) (

𝑑

𝑑𝑥
+ 𝑥)]𝜓 

(131) 

 
[(
𝑑

𝑑𝑥
+ 𝑥)

2

]𝜓 = (
𝑑

𝑑𝑥
+ 𝑥) (

𝑑𝜓

𝑑𝑥
+ 𝑥𝜓) 

(132) 

 
[(
𝑑

𝑑𝑥
+ 𝑥)

2

]𝜓 =
𝑑2𝜓

𝑑𝑥2
+
𝑑

𝑑𝑥
𝑥𝜓 + 𝑥

𝑑𝜓

𝑑𝑥
+ 𝑥2𝜓 

(133) 

 
[(
𝑑

𝑑𝑥
+ 𝑥)

2

]𝜓 =
𝑑2𝜓

𝑑𝑥2
+ 𝑥

𝑑𝜓

𝑑𝑥
+ 𝜓

𝑑𝑥

𝑑𝑥
+ 𝑥

𝑑𝜓

𝑑𝑥
+ 𝑥2𝜓 

(134) 

 
[(
𝑑

𝑑𝑥
+ 𝑥)

2

]𝜓 =
𝑑2𝜓

𝑑𝑥2
+ 2𝑥

𝑑𝜓

𝑑𝑥
+ 𝑥2𝜓 + 𝜓 

(135) 

Removing ψ from both sides, we get 

 
(
𝑑

𝑑𝑥
+ 𝑥)

2

=
𝑑2

𝑑𝑥2
+ 2𝑥

𝑑

𝑑𝑥
+ 𝑥2 + 1 

(136) 

iv) Find the resultant expression for the following operator 

 
(𝑥 +

𝑑

𝑑𝑥
) (𝑥 −

𝑑

𝑑𝑥
) 

(137) 

In order to find the resultant operator, suppose a function ψ(x) which is used as operand, then we can say that 
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[(𝑥 +

𝑑

𝑑𝑥
) (𝑥 −

𝑑

𝑑𝑥
)]𝜓 = (𝑥 +

𝑑

𝑑𝑥
) (𝑥𝜓 −

𝑑𝜓

𝑑𝑥
) 

(138) 

 
[(𝑥 +

𝑑

𝑑𝑥
) (𝑥 −

𝑑

𝑑𝑥
)]𝜓 = 𝑥𝑥𝜓 − 𝑥

𝑑𝜓

𝑑𝑥
+
𝑑

𝑑𝑥
𝑥𝜓 −

𝑑2𝜓

𝑑𝑥2
 

(139) 

 
[(𝑥 +

𝑑

𝑑𝑥
) (𝑥 −

𝑑

𝑑𝑥
)]𝜓 = 𝑥2𝜓 − 𝑥

𝑑𝜓

𝑑𝑥
+ 𝑥

𝑑𝜓

𝑑𝑥
+ 𝜓

𝑑𝑥

𝑑𝑥
−
𝑑2𝜓

𝑑𝑥2
 

(140) 

 
[(𝑥 +

𝑑

𝑑𝑥
) (𝑥 −

𝑑

𝑑𝑥
)]𝜓 = 𝑥2𝜓 + 𝜓

𝑑𝑥

𝑑𝑥
−
𝑑2𝜓

𝑑𝑥2
 

(141) 

 
[(𝑥 +

𝑑

𝑑𝑥
) (𝑥 −

𝑑

𝑑𝑥
)]𝜓 = [𝑥2 +

𝑑𝑥

𝑑𝑥
−
𝑑2

𝑑𝑥2
]𝜓 

(142) 

Removing ψ from both sides, we get 

 
(𝑥 +

𝑑

𝑑𝑥
) (𝑥 −

𝑑

𝑑𝑥
) = 𝑥2 + 1 −

𝑑2

𝑑𝑥2
 

(143) 

               The resultant operator calculation is frequently used as a part of the commutator calculation and will 
be discussed in detail in this chapter. 

 Commutation Relations of Various Quantum Mechanical Operators 

               As we have discussed previously that one of the most fundamental properties of operator 
multiplication is the commutation relation or the commutation rule. two operators, A and B, are said to be 
commutating or non-commutating depending upon the value of their commutator. 

 [𝐴,̂ �̂�] = �̂��̂� − �̂��̂� = 0 → 𝐶𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑖𝑛𝑔 (144) 

 [𝐴,̂ �̂�] = �̂��̂� − �̂��̂� ≠ 0 → 𝑁𝑜𝑛-𝑐𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑖𝑛𝑔 (145) 

The physical significance of the commutation relations is that when two operators commute, it means they are 
having a simultaneous set of eigenfunctions; and their corresponding physical properties can be calculated 
simultaneously and accurately. However, if the commutator is non-zero, the respective physical properties 
cannot be obtained simultaneously and accurately. Some important commutation relations are given below. 

1. Commutators of some simple operators: 

i) Calculate the commutator of the following 

 
[𝑥,

𝑑

𝑑𝑥
] 

(146) 

Let it be operated over a function ψ. We have 

Buy the complete book with TOC navigation, 
high resolution images and 

no watermark.

https://www.dalalinstitute.com/books/a-textbook-of-physical-chemistry-volume-1/


40 A Textbook of Physical Chemistry – Volume I 

 Copyright © Mandeep Dalal  

 
[𝑥,

𝑑

𝑑𝑥
]𝜓 = 𝑥 

𝑑

𝑑𝑥
𝜓 −

𝑑

𝑑𝑥
𝑥 𝜓 

(147) 

 
[𝑥,

𝑑

𝑑𝑥
]𝜓 = 𝑥 

𝑑𝜓

𝑑𝑥
− 𝜓 − 𝑥

𝑑 𝜓

𝑑𝑥
 

(148) 

 
[𝑥,

𝑑

𝑑𝑥
]𝜓 = −𝜓 

(149) 

or 

 
[𝑥,

𝑑

𝑑𝑥
] = −1 

(150) 

ii) Calculate the commutator of the following 

 
[𝑦,

𝑑

𝑑𝑥
] 

(151) 

Let it be operated over a function ψ. We have 

 
[𝑦,

𝑑

𝑑𝑥
]𝜓 = 𝑦 

𝑑

𝑑𝑥
𝜓 −

𝑑

𝑑𝑥
𝑦 𝜓 

(152) 

 
[𝑦,

𝑑

𝑑𝑥
]𝜓 = 𝑦 

𝑑𝜓

𝑑𝑥
− 𝑦

𝑑 𝜓

𝑑𝑥
− 𝜓

𝑑 𝑦

𝑑𝑥
 

(153) 

 
[𝑥,

𝑑

𝑑𝑥
]𝜓 = 0 

(154) 

iii) Calculate the commutator of the following 

 
[
𝑑

𝑑𝑥
,
𝑑2

𝑑𝑥2
 ] 

(155) 

Let it be operated over a function ψ. We have 

 
[
𝑑

𝑑𝑥
,
𝑑2

𝑑𝑥2
 ] 𝜓 =

𝑑

𝑑𝑥

𝑑2

𝑑𝑥2
𝜓 −

𝑑2

𝑑𝑥2
𝑑

𝑑𝑥
 𝜓 

(156) 

or 

 
[
𝑑

𝑑𝑥
,
𝑑2

𝑑𝑥2
 ] 𝜓 =

𝑑3𝜓

𝑑𝑥3
−
𝑑3𝜓

𝑑𝑥3
  

(157) 

 
[
𝑑

𝑑𝑥
,
𝑑2

𝑑𝑥2
 ] 𝜓 = 0 

(158) 
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2. Commutators of position and linear momentum operators: 

i) Find the commutator of the following 

 [𝑥, �̂�𝑥] (159) 

Let it be operated over a function ψ. We have 

 [𝑥, �̂�𝑥]𝜓 = 𝑥 �̂�𝑥  𝜓 − �̂�𝑥  �̂�  𝜓 (160) 

 
[𝑥, �̂�𝑥  ]𝜓 = 𝑥

ℎ

2𝜋𝑖

𝜕

𝜕𝑥
𝜓 −

ℎ

2𝜋𝑖

𝜕

𝜕𝑥
𝑥 𝜓  

(161) 

 
[𝑥, �̂�𝑥  ]𝜓 =

ℎ

2𝜋𝑖
𝑥
𝜕𝜓

𝜕𝑥
−
ℎ

2𝜋𝑖
𝑥
𝜕𝜓

𝜕𝑥
 −

ℎ

2𝜋𝑖
𝜓
𝜕𝑥

𝜕𝑥
    

(162) 

 
[𝑥, �̂�𝑥  ]𝜓 = −

ℎ

2𝜋𝑖
𝜓 

 

 
[𝑥, �̂�𝑥] = −

ℎ

2𝜋𝑖
=
ℎ𝑖

2𝜋
= 𝑖ħ 

(163) 

ii) Find the commutator of the following 

 [𝑥𝑛, �̂�𝑥] (164) 

Let it be operated over a function ψ. We have 

 [𝑥𝑛, �̂�𝑥  ]𝜓 = 𝑥
𝑛 �̂�𝑥  𝜓 − �̂�𝑥  𝑥

𝑛  𝜓 (165) 

 
[𝑥𝑛, �̂�𝑥  ]𝜓 = 𝑥

𝑛
ℎ

2𝜋𝑖

𝜕

𝜕𝑥
𝜓 −

ℎ

2𝜋𝑖

𝜕

𝜕𝑥
𝑥𝑛 𝜓  

(166) 

 
[𝑥𝑛 , �̂�𝑥  ]𝜓 =

ℎ

2𝜋𝑖
𝑥𝑛
𝜕𝜓

𝜕𝑥
−
ℎ

2𝜋𝑖
𝑥𝑛
𝜕𝜓

𝜕𝑥
 −

ℎ

2𝜋𝑖
𝑛𝑥𝑛−1𝜓    

(167) 

 
[𝑥𝑛, �̂�𝑥  ]𝜓 = −

ℎ

2𝜋𝑖
𝑛𝑥𝑛−1𝜓    

(168) 

Removing ψ from both sides, we get 

 
[𝑥𝑛, �̂�𝑥  ] = −

ℎ

2𝜋𝑖
𝑛𝑥𝑛−1 

(169) 

                The commutation relations between position and linear momentum can mainly be divided into three 
categories as discussed below.  

(a) When position and momentum are along the same axis: 

 [𝑥𝑛, �̂�𝑥] = 𝑛𝑖ħ𝑥
𝑛−1 (170) 

Buy the complete book with TOC navigation, 
high resolution images and 

no watermark.

https://www.dalalinstitute.com/books/a-textbook-of-physical-chemistry-volume-1/


42 A Textbook of Physical Chemistry – Volume I 

 Copyright © Mandeep Dalal  

 [ �̂�𝑥 , 𝑥
𝑛] = −𝑛𝑖ħ𝑥𝑛−1 (171) 

and 

 [𝑥, �̂�𝑥
𝑛] = 𝑛𝑖ħ𝑝𝑥

𝑛−1 (172) 

 [�̂�𝑥
𝑛, 𝑥 ] = −𝑛𝑖ħ𝑝𝑥

𝑛−1 (173) 

(b) When position and momentum are along different axis: 

 [𝑥, �̂�𝑦] = 0 (174) 

 [𝑥, �̂�𝑧] = 0 (175) 

 [�̂�, �̂�𝑥] = 0 (176) 

 [�̂�, �̂�𝑧] = 0 (177) 

 [�̂�, �̂�𝑥] = 0 (178) 

 [�̂�, �̂�𝑦] = 0 (179) 

(b) When positions are along the different axis: 

 [𝑥, �̂�] = 0 (180) 

 [𝑥, �̂�] = 0 (181) 

 [�̂�, �̂�] = 0 (182) 

(b) When positions are along the different axis: 

 [�̂�𝑥 , �̂�𝑦] = 0 (183) 

 [�̂�𝑥 , �̂�𝑧] = 0 (184) 

 [�̂�𝑦, �̂�𝑧] = 0 (185) 

3. Commutators of angular momentum operators: 

i) The commutator of orbital angular momentum operators along x and y-axis. 

 [�̂�𝑥, �̂�𝑦] = �̂�𝑥�̂�𝑦 − �̂�𝑦�̂�𝑥 (186) 

Finding the values of �̂�𝑥�̂�𝑦 , we get 

 
�̂�𝑥�̂�𝑦 = [

ℎ

2𝜋𝑖
(𝑦
𝜕

𝜕𝑧
− 𝑧

𝜕

𝜕𝑦
)] [

ℎ

2𝜋𝑖
(𝑧
𝜕

𝜕𝑥
− 𝑥

𝜕

𝜕𝑧
)] 

(187) 
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= −

ℎ2

4𝜋2
[(𝑦

𝜕

𝜕𝑧
− 𝑧

𝜕

𝜕𝑦
) (𝑧

𝜕

𝜕𝑥
− 𝑥

𝜕

𝜕𝑧
)] 

(188) 

 
= −

ℎ2

4𝜋2
(𝑦
𝜕

𝜕𝑧
𝑧
𝜕

𝜕𝑥
− 𝑧

𝜕

𝜕𝑦
𝑧
𝜕

𝜕𝑥
− 𝑦

𝜕

𝜕𝑧
𝑥
𝜕

𝜕𝑧
+ 𝑧

𝜕

𝜕𝑦
𝑥
𝜕

𝜕𝑧
) 

(189) 

 
= −

ℎ2

4𝜋2
(𝑦

𝜕

𝜕𝑥

𝜕𝑧

𝜕𝑧
+ 𝑦𝑧

𝜕2

𝜕2𝑧𝑥
− 𝑧2

𝜕2

𝜕2𝑦𝑥
− 𝑦𝑥

𝜕2

𝜕𝑧2
+ 𝑧𝑥

𝜕2

𝜕𝑦𝑧
) 

(190) 

 
= −ħ2 (𝑦

𝜕

𝜕𝑥
+ 𝑦𝑧

𝜕2

𝜕2𝑧𝑥
− 𝑧2

𝜕2

𝜕2𝑦𝑥
− 𝑦𝑥

𝜕2

𝜕𝑧2
+ 𝑧𝑥

𝜕2

𝜕𝑦𝑧
) 

(191) 

Similarly obtaining the value of �̂�𝑦�̂�𝑥, we get 

 
�̂�𝑦�̂�𝑥 = [

ℎ

2𝜋𝑖
(𝑧
𝜕

𝜕𝑥
− 𝑥

𝜕

𝜕𝑧
)] [

ℎ

2𝜋𝑖
(𝑦
𝜕

𝜕𝑧
− 𝑧

𝜕

𝜕𝑦
)] 

(192) 

 
= −

ℎ2

4𝜋2
[(𝑧

𝜕

𝜕𝑥
− 𝑥

𝜕

𝜕𝑧
) (𝑦

𝜕

𝜕𝑧
− 𝑧

𝜕

𝜕𝑦
)] 

(193) 

 
= −

ℎ2

4𝜋2
(𝑧
𝜕

𝜕𝑥
𝑦
𝜕

𝜕𝑧
− 𝑧

𝜕

𝜕𝑥
𝑧
𝜕

𝜕𝑦
− 𝑥

𝜕

𝜕𝑧
𝑦
𝜕

𝜕𝑧
+ 𝑥

𝜕

𝜕𝑧
𝑧
𝜕

𝜕𝑦
) 

(194) 

 
= −

ℎ2

4𝜋2
(𝑧𝑦

𝜕2

𝜕2𝑥𝑧
− 𝑧2

𝜕2

𝜕2𝑥𝑦
− 𝑥𝑦

𝜕2

𝜕𝑧2
+ 𝑥𝑧

𝜕2

𝜕𝑧𝑦
+ 𝑥

𝜕

𝜕𝑦

𝜕𝑧

𝜕𝑧
) 

(195) 

 
= −ħ2 (𝑧𝑦

𝜕2

𝜕2𝑥𝑧
− 𝑧2

𝜕2

𝜕2𝑥𝑦
− 𝑥𝑦

𝜕2

𝜕𝑧2
+ 𝑥𝑧

𝜕2

𝜕𝑧𝑦
+ 𝑥

𝜕

𝜕𝑦
) 

(196) 

Now putting the values of �̂�𝑥�̂�𝑦 and �̂�𝑦�̂�𝑥 in equation (183), we get the following. 

 
[�̂�𝑥, �̂�𝑦] = [−ħ

2 (𝑦
𝜕

𝜕𝑥
+ 𝑦𝑧

𝜕2

𝜕2𝑧𝑥
− 𝑧2

𝜕2

𝜕2𝑦𝑥
− 𝑦𝑥

𝜕2

𝜕𝑧2
+ 𝑧𝑥

𝜕2

𝜕𝑦𝑧
)]

− [−ħ2 (𝑧𝑦
𝜕2

𝜕2𝑥𝑧
− 𝑧2

𝜕2

𝜕2𝑥𝑦
− 𝑥𝑦

𝜕2

𝜕𝑧2
+ 𝑥𝑧

𝜕2

𝜕𝑧𝑦
+ 𝑥

𝜕

𝜕𝑦
)] 

(197) 

 
[�̂�𝑥, �̂�𝑦] = −ħ

2 (𝑦
𝜕

𝜕𝑥
− 𝑥

𝜕

𝜕𝑦
) 

(198) 

Taking negative sign common, we get 

 
[�̂�𝑥, �̂�𝑦] = ħ

2 (𝑥
𝜕

𝜕𝑦
− 𝑦

𝜕

𝜕𝑥
) 

(199) 
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[�̂�𝑥 , �̂�𝑦] = 𝑖ħ [−𝑖ħ (𝑥

𝜕

𝜕𝑦
− 𝑦

𝜕

𝜕𝑥
)] 

(200) 

 [�̂�𝑥 , �̂�𝑦] = 𝑖ħ�̂�𝑧 (201) 

ii) The commutator of orbital angular momentum operators along y and z-axis. 

 [�̂�𝑦, �̂�𝑧] = �̂�𝑦�̂�𝑧 − �̂�𝑧�̂�𝑦 (202) 

Finding the values of �̂�𝑦�̂�𝑧 , we get 

 
�̂�𝑦�̂�𝑧 = [

ℎ

2𝜋𝑖
(𝑧
𝜕

𝜕𝑥
− 𝑥

𝜕

𝜕𝑧
)] [

ℎ

2𝜋𝑖
(𝑥
𝜕

𝜕𝑦
− 𝑦

𝜕

𝜕𝑥
)] 

(203) 

 
= −

ℎ2

4𝜋2
[(𝑧

𝜕

𝜕𝑥
− 𝑥

𝜕

𝜕𝑧
) (𝑥

𝜕

𝜕𝑦
− 𝑦

𝜕

𝜕𝑥
)] 

(204) 

 
= −

ℎ2

4𝜋2
(𝑧
𝜕

𝜕𝑥
𝑥
𝜕

𝜕𝑦
− 𝑥

𝜕

𝜕𝑧
𝑥
𝜕

𝜕𝑦
− 𝑧

𝜕

𝜕𝑥
𝑦
𝜕

𝜕𝑥
+ 𝑥

𝜕

𝜕𝑧
𝑦
𝜕

𝜕𝑥
) 

(205) 

 
= −

ℎ2

4𝜋2
(𝑧
𝜕

𝜕𝑦

𝜕𝑥

𝜕𝑥
+ 𝑧𝑥

𝜕2

𝜕𝑥𝑦
− 𝑥2

𝜕2

𝜕2𝑧𝑦
− 𝑧𝑦

𝜕

𝜕𝑥2
+ 𝑥𝑦

𝜕2

𝜕𝑧𝑥
) 

(206) 

 
= −ħ2 (𝑧

𝜕

𝜕𝑦
+ 𝑧𝑥

𝜕2

𝜕𝑥𝑦
− 𝑥2

𝜕2

𝜕2𝑧𝑦
− 𝑧𝑦

𝜕

𝜕𝑥2
+ 𝑥𝑦

𝜕2

𝜕𝑧𝑥
) 

(207) 

Similarly obtaining the value of �̂�𝑧�̂�𝑦, we get 

 
�̂�𝑧�̂�𝑦 = [

ℎ

2𝜋𝑖
(𝑥
𝜕

𝜕𝑦
− 𝑦

𝜕

𝜕𝑥
)] [

ℎ

2𝜋𝑖
(𝑧
𝜕

𝜕𝑥
− 𝑥

𝜕

𝜕𝑧
)] 

(208) 

 
= −

ℎ2

4𝜋2
[(𝑥

𝜕

𝜕𝑦
− 𝑦

𝜕

𝜕𝑥
) (𝑧

𝜕

𝜕𝑥
− 𝑥

𝜕

𝜕𝑧
)] 

(209) 

 
= −

ℎ2

4𝜋2
(𝑥
𝜕

𝜕𝑦
𝑧
𝜕

𝜕𝑥
− 𝑥

𝜕

𝜕𝑦
𝑥
𝜕

𝜕𝑧
− 𝑦

𝜕

𝜕𝑥
𝑧
𝜕

𝜕𝑥
+ 𝑦

𝜕

𝜕𝑥
𝑥
𝜕

𝜕𝑧
) 

(210) 

 
= −

ℎ2

4𝜋2
(𝑥𝑧

𝜕2

𝜕𝑦𝑥
− 𝑥2

𝜕2

𝜕𝑦𝑧
− 𝑦𝑧

𝜕2

𝜕𝑥2
+ 𝑦𝑥

𝜕2

𝜕𝑥𝑧
+ 𝑦

𝜕

𝜕𝑧

𝜕𝑥

𝜕𝑥
) 

(211) 

 
= −ħ2 (𝑥𝑧

𝜕2

𝜕𝑦𝑥
− 𝑥2

𝜕2

𝜕𝑦𝑧
− 𝑦𝑧

𝜕2

𝜕𝑥2
+ 𝑦𝑥

𝜕2

𝜕𝑥𝑧
+ 𝑦

𝜕

𝜕𝑧
) 

(212) 

Now putting the values of �̂�𝑦�̂�𝑧 and �̂�𝑧�̂�𝑦 in equation (212), we get the following. 
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[�̂�𝑦, �̂�𝑧] = [−ħ

2 (𝑧
𝜕

𝜕𝑦
+ 𝑧𝑥

𝜕2

𝜕𝑥𝑦
− 𝑥2

𝜕2

𝜕2𝑧𝑦
− 𝑧𝑦

𝜕

𝜕𝑥2
+ 𝑥𝑦

𝜕2

𝜕𝑧𝑥
)]

− [−ħ2 (𝑥𝑧
𝜕2

𝜕𝑦𝑥
− 𝑥2

𝜕2

𝜕𝑦𝑧
− 𝑦𝑧

𝜕2

𝜕𝑥2
+ 𝑦𝑥

𝜕2

𝜕𝑥𝑧
+ 𝑦

𝜕

𝜕𝑧
)] 

(213) 

 
[�̂�𝑦, �̂�𝑧] = −ħ

2 (𝑧
𝜕

𝜕𝑦
− 𝑦

𝜕

𝜕𝑧
) 

(214) 

Taking negative sign common, we get 

 
[�̂�𝑦, �̂�𝑧] = ħ

2 (𝑦
𝜕

𝜕𝑧
− 𝑧

𝜕

𝜕𝑦
) 

(215) 

 
[�̂�𝑦, �̂�𝑧] = 𝑖ħ [−𝑖ħ (𝑦

𝜕

𝜕𝑧
− 𝑧

𝜕

𝜕𝑦
)] 

(216) 

 [�̂�𝑦, �̂�𝑧] = 𝑖ħ�̂�𝑥 (217) 

iii) The commutator of orbital angular momentum operators along z and x-axis. 

 [�̂�𝑧, �̂�𝑥] = �̂�𝑧�̂�𝑥 − �̂�𝑥�̂�𝑧 (218) 

Finding the values of �̂�𝑧�̂�𝑥 , we get 

 
�̂�𝑧�̂�𝑥 = [

ℎ

2𝜋𝑖
(𝑥
𝜕

𝜕𝑦
− 𝑦

𝜕

𝜕𝑥
)] [

ℎ

2𝜋𝑖
(𝑦
𝜕

𝜕𝑧
− 𝑧

𝜕

𝜕𝑦
)] 

(219) 

 
= −

ℎ2

4𝜋2
[(𝑥

𝜕

𝜕𝑦
− 𝑦

𝜕

𝜕𝑥
) (𝑦

𝜕

𝜕𝑧
− 𝑧

𝜕

𝜕𝑦
)] 

(220) 

 
= −

ℎ2

4𝜋2
(𝑥
𝜕

𝜕𝑦
𝑦
𝜕

𝜕𝑧
− 𝑥

𝜕

𝜕𝑦
𝑧
𝜕

𝜕𝑦
− 𝑦

𝜕

𝜕𝑥
𝑦
𝜕

𝜕𝑧
+ 𝑦

𝜕

𝜕𝑥
𝑧
𝜕

𝜕𝑦
) 

(221) 

 
= −

ℎ2

4𝜋2
(𝑥
𝜕

𝜕𝑧

𝜕𝑦

𝜕𝑦
+ 𝑥𝑦

𝜕2

𝜕𝑦𝑧
− 𝑥𝑧

𝜕2

𝜕𝑦2
− 𝑦2

𝜕2

𝜕𝑥𝑧
+ 𝑦𝑧

𝜕2

𝜕𝑥𝑦
) 

(222) 

 
= −ħ2 (𝑥

𝜕

𝜕𝑧
+ 𝑥𝑦

𝜕2

𝜕𝑦𝑧
− 𝑥𝑧

𝜕2

𝜕𝑦2
− 𝑦2

𝜕2

𝜕𝑥𝑧
+ 𝑦𝑧

𝜕2

𝜕𝑥𝑦
) 

(223) 

Similarly obtaining the value of �̂�𝑥�̂�𝑧, we get 

 
�̂�𝑥�̂�𝑧 = [

ℎ

2𝜋𝑖
(𝑦
𝜕

𝜕𝑧
− 𝑧

𝜕

𝜕𝑦
)] [

ℎ

2𝜋𝑖
(𝑥
𝜕

𝜕𝑦
− 𝑦

𝜕

𝜕𝑥
)] 

(224) 
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= −

ℎ2

4𝜋2
[(𝑦

𝜕

𝜕𝑧
− 𝑧

𝜕

𝜕𝑦
) (𝑥

𝜕

𝜕𝑦
− 𝑦

𝜕

𝜕𝑥
)] 

(225) 

or 

 
= −

ℎ2

4𝜋2
(𝑦
𝜕

𝜕𝑧
𝑥
𝜕

𝜕𝑦
− 𝑦

𝜕

𝜕𝑧
𝑦
𝜕

𝜕𝑥
− 𝑧

𝜕

𝜕𝑦
𝑥
𝜕

𝜕𝑦
+ 𝑧

𝜕

𝜕𝑦
𝑦
𝜕

𝜕𝑥
) 

(226) 

 
= −

ℎ2

4𝜋2
(𝑦𝑥

𝜕2

𝜕𝑧𝑦
− 𝑦2

𝜕2

𝜕𝑧𝑥
− 𝑧𝑥

𝜕2

𝜕𝑦2
+ 𝑧

𝜕

𝜕𝑥

𝜕𝑦

𝜕𝑦
+ 𝑧𝑦

𝜕2

𝜕𝑦𝑥
) 

(227) 

 
= −ħ2 (𝑦𝑥

𝜕2

𝜕𝑧𝑦
− 𝑦2

𝜕2

𝜕𝑧𝑥
− 𝑧𝑥

𝜕2

𝜕𝑦2
+ 𝑧

𝜕

𝜕𝑥
+ 𝑧𝑦

𝜕2

𝜕𝑦𝑥
) 

(228) 

Now putting the values of �̂�𝑧�̂�𝑥 and �̂�𝑥�̂�𝑧 in equation (218), we get the following. 

 
[�̂�𝑧, �̂�𝑥] = [−ħ

2 (𝑥
𝜕

𝜕𝑧
+ 𝑥𝑦

𝜕2

𝜕𝑦𝑧
− 𝑥𝑧

𝜕2

𝜕𝑦2
− 𝑦2

𝜕2

𝜕𝑥𝑧
+ 𝑦𝑧

𝜕2

𝜕𝑥𝑦
)]

− [−ħ2 (𝑦𝑥
𝜕2

𝜕𝑧𝑦
− 𝑦2

𝜕2

𝜕𝑧𝑥
− 𝑧𝑥

𝜕2

𝜕𝑦2
+ 𝑧

𝜕

𝜕𝑥
+ 𝑧𝑦

𝜕2

𝜕𝑦𝑥
)] 

(229) 

 
[�̂�𝑧, �̂�𝑥] = −ħ

2 (𝑥
𝜕

𝜕𝑧
− 𝑧

𝜕

𝜕𝑥
) 

(230) 

Taking negative sign common, we get 

 
[�̂�𝑧, �̂�𝑥] = ħ

2 (𝑦
𝜕

𝜕𝑧
− 𝑧

𝜕

𝜕𝑦
) 

(231) 

 
[�̂�𝑧, �̂�𝑥] = 𝑖ħ [−𝑖ħ (𝑦

𝜕

𝜕𝑧
− 𝑧

𝜕

𝜕𝑦
)] 

(232) 

 [�̂�𝑧, �̂�𝑥] = 𝑖ħ�̂�𝑦 (233) 

iv) The commutator of total orbital angular momentum squared operator and orbital angular momentum along 
one of the three-axis. 

 [�̂�2, �̂�𝑧] = [�̂�𝑥
2 + �̂�𝑦

2 + �̂�𝑧
2 , �̂�𝑧] (234) 

 = [�̂�𝑥
2  �̂�𝑧 + �̂�𝑦

2  �̂�𝑧 + �̂�𝑧
2  �̂�𝑧 − �̂�𝑧�̂�𝑥

2 − �̂�𝑧�̂�𝑦
2 − �̂�𝑧�̂�𝑧

2] (235) 

 = [(�̂�𝑥
2  �̂�𝑧 − �̂�𝑧�̂�𝑥

2) + (�̂�𝑦
2  �̂�𝑧 − �̂�𝑧�̂�𝑦

2 ) + (�̂�𝑧
2  �̂�𝑧 − �̂�𝑧�̂�𝑧

2)] (236) 

 [�̂�2, �̂�𝑧] = [�̂�𝑥
2  , �̂�𝑧] + [�̂�𝑦

2  �̂�𝑧] + [�̂�𝑧
2  �̂�𝑧] (237) 

Now finding [�̂�𝑥2  , �̂�𝑧] first, we get 
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 [�̂�𝑥
2  , �̂�𝑧] = �̂�𝑥

2  �̂�𝑧 − �̂�𝑧�̂�𝑥
2  (238) 

 = �̂�𝑥�̂�𝑥 �̂�𝑧 − �̂�𝑧�̂�𝑥�̂�𝑥 (239) 

 = [�̂�𝑥�̂�𝑥 �̂�𝑧 − �̂�𝑥�̂�𝑧 �̂�𝑥] − [�̂�𝑧�̂�𝑥�̂�𝑥 − �̂�𝑥�̂�𝑧 �̂�𝑥] (240) 

 = �̂�𝑥  [�̂�𝑥�̂�𝑧 − �̂�𝑧 �̂�𝑥] − [�̂�𝑧�̂�𝑥 − �̂�𝑥�̂�𝑧 ]�̂�𝑥 (241) 

 = �̂�𝑥  [�̂�𝑥�̂�𝑧 − �̂�𝑧 �̂�𝑥] + [�̂�𝑥�̂�𝑧 − �̂�𝑧�̂�𝑥  ]�̂�𝑥 (242) 

 = �̂�𝑥  [−𝑖ħ�̂�𝑦 ] + [−𝑖ħ�̂�𝑦 ]�̂�𝑥 (243) 

 = −𝑖ħ�̂�𝑥�̂�𝑦 − 𝑖ħ�̂�𝑦�̂�𝑥 = −𝑖ħ[�̂�𝑥�̂�𝑦 + �̂�𝑦�̂�𝑥] (244) 

Similarly,  

 [�̂�𝑦
2  , �̂�𝑧] = �̂�𝑦

2  �̂�𝑧 − �̂�𝑧�̂�𝑦
2  (245) 

 = �̂�𝑦�̂�𝑦 �̂�𝑧 − �̂�𝑧�̂�𝑦�̂�𝑦 (246) 

 = [�̂�𝑦�̂�𝑦 �̂�𝑧 − �̂�𝑦�̂�𝑧�̂�𝑦] − [�̂�𝑧�̂�𝑦�̂�𝑦 − �̂�𝑦�̂�𝑧�̂�𝑦]  

 = �̂�𝑦 [�̂�𝑦�̂�𝑧 − �̂�𝑧 �̂�𝑦] − [�̂�𝑧�̂�𝑦 − �̂�𝑦�̂�𝑧 ]�̂�𝑦  

 = �̂�𝑦 [�̂�𝑦�̂�𝑧 − �̂�𝑧 �̂�𝑦] + [�̂�𝑦�̂�𝑧 − �̂�𝑧 �̂�𝑦 ]�̂�𝑦  

 = �̂�𝑦 [𝑖ħ�̂�𝑥 ] + [𝑖ħ�̂�𝑥 ]�̂�𝑦  

 = 𝑖ħ�̂�𝑦�̂�𝑥 + 𝑖ħ�̂�𝑥�̂�𝑦 = 𝑖ħ[�̂�𝑦�̂�𝑥 + �̂�𝑥�̂�𝑦] (247) 

Similarly,  

 [�̂�𝑧
2  , �̂�𝑧] = �̂�𝑧

2  �̂�𝑧 − �̂�𝑧�̂�𝑧
2  

 = �̂�𝑧�̂�𝑧 �̂�𝑧 − �̂�𝑧�̂�𝑧�̂�𝑧  

 [�̂�𝑧
2  , �̂�𝑧] = 0 (248) 

Now putting the value of �̂�𝑥2 �̂�𝑧, �̂�𝑦2 �̂�𝑧 and �̂�𝑧2�̂�𝑧 in equation (237), we get  

 [�̂�2, �̂�𝑧] = −𝑖ħ[�̂�𝑥�̂�𝑦 + �̂�𝑦�̂�𝑥] + 𝑖ħ[�̂�𝑦�̂�𝑥 + �̂�𝑥�̂�𝑦] + 0  

 [�̂�2, �̂�𝑧] = 0 (249) 

Also 
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 [�̂�2, �̂�𝑦] = 0; 𝑎𝑛𝑑 [�̂�
2, �̂�𝑥] = 0 (250) 

Hence, the commutation relations of angular momentum operators along two different directions do not 
commute with each other and hence cannot give eigenvalues simultaneously and accurately. One the other 
hand, total angular momentum squared and angular momentum along one axis do commute with each other. 

                The commutation relations between angular momentum operators can be mainly divided into four 
categories as discussed below. 

(a) Orbital angular momentum commutation: 

 [�̂�𝑥, �̂�𝑦] = 𝑖ħ�̂�𝑧;        [�̂�𝑦 , �̂�𝑥] = −𝑖ħ�̂�𝑧 (251) 

 [�̂�𝑦, �̂�𝑧] = 𝑖ħ�̂�𝑥;       [�̂�𝑧, �̂�𝑦] = −𝑖ħ�̂�𝑥 (252) 

 [�̂�𝑧, �̂�𝑥] = 𝑖ħ�̂�𝑦;       [�̂�𝑥 , �̂�𝑧] = −𝑖ħ�̂�𝑦 (253) 

 [�̂�2, �̂�𝑥] = 0;       [�̂�𝑥, �̂�
2] = 0 (254) 

 [�̂�2, �̂�𝑦] = 0;       [�̂�𝑦, �̂�
2] = 0 (255) 

 [�̂�2, �̂�𝑧] = 0;       [�̂�𝑧, �̂�
2] = 0 (256) 

(b) Spin angular momentum commutation: 

 [�̂�𝑥, �̂�𝑦] = 𝑖ħ�̂�𝑧;        [�̂�𝑦 , �̂�𝑥] = −𝑖ħ�̂�𝑧 (257) 

 [�̂�𝑦, �̂�𝑧] = 𝑖ħ�̂�𝑥;       [�̂�𝑧, �̂�𝑦] = −𝑖ħ�̂�𝑥 (258) 

 [�̂�𝑧, �̂�𝑥] = 𝑖ħ�̂�𝑦;       [�̂�𝑥, �̂�𝑧] = −𝑖ħ�̂�𝑦 (259) 

 [�̂�2, �̂�𝑥] = 0;       [�̂�𝑥, �̂�
2] = 0 (260) 

 [�̂�2, 𝑆𝑦] = 0;       [�̂�𝑦, �̂�
2] = 0 (261) 

 [�̂�2, �̂�𝑧] = 0;       [�̂�𝑧, �̂�
2] = 0 (262) 

(c) Total angular momentum commutation: 

 [𝐽𝑥, 𝐽𝑦] = 𝑖ħ𝐽𝑧;        [𝐽𝑦 , 𝐽𝑥] = −𝑖ħ𝐽𝑧 (263) 

 [𝐽𝑦, 𝐽𝑧] = 𝑖ħ𝐽𝑥;       [𝐽𝑧, 𝐽𝑦] = −𝑖ħ𝐽𝑥 (264) 

 [𝐽𝑧, 𝐽𝑥] = 𝑖ħ𝐽𝑦;       [𝐽𝑥 , 𝐽𝑧] = −𝑖ħ𝐽𝑦 (265) 

 [𝐽2, 𝐽𝑥] = 0;       [𝐽𝑥, 𝐽
2] = 0 (266) 
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 [𝐽2, 𝐽𝑦] = 0;       [𝐽𝑦, 𝐽
2] = 0 (267) 

 [𝐽2, 𝐽𝑧] = 0;       [𝐽𝑧, 𝐽
2] = 0 (268) 

(d) Total angular momentum commutation: 

 [�̂�𝑥 , �̂�𝑥] = 0;       [�̂�𝑥, �̂�𝑥] = 0 (263) 

 [�̂�𝑥, �̂�𝑦] = 0;       [�̂�𝑦, �̂�𝑥] = 0 (264) 

 [�̂�𝑥, �̂�𝑧] = 0;       [�̂�𝑧, �̂�𝑥] = 0 (265) 

 [�̂�𝑦, �̂�𝑥] = 0;       [�̂�𝑥, �̂�𝑦] = 0 (266) 

 [�̂�𝑦, �̂�𝑦] = 0;       [�̂�𝑦, �̂�𝑦] = 0 (267) 

 [�̂�𝑦, �̂�𝑧] = 0;       [�̂�𝑧, �̂�𝑦] = 0 (268) 

 [�̂�𝑧, �̂�𝑥] = 0;       [�̂�𝑥, �̂�𝑧] = 0 (269) 

 [�̂�𝑧, �̂�𝑦] = 0;       [�̂�𝑦, �̂�𝑧] = 0 (270) 

 [�̂�𝑧, �̂�𝑧] = 0;       [�̂�𝑧, �̂�𝑧] = 0 (271) 

4. Commutators of Ladder operators: 

i) Find the commutator of the following 

 [𝐽2, 𝐽+] (272) 

Let 

 [𝐽2, 𝐽+] = [𝐽
2, 𝐽𝑥 + 𝑖𝐽𝑦] (273) 

 = 𝐽2(𝐽𝑥 + 𝑖𝐽𝑦) − (𝐽𝑥 + 𝑖𝐽𝑦)𝐽
2 (274) 

 = 𝐽2𝐽𝑥 + 𝑖𝐽
2𝐽𝑦 − 𝐽𝑥𝐽

2 − 𝑖𝐽𝑦𝐽
2 (275) 

 = [𝐽2𝐽𝑥 − 𝐽𝑥𝐽
2] + 𝑖[𝐽2𝐽𝑦 − 𝐽𝑦𝐽

2] (276) 

 = [𝐽2, 𝐽𝑥] + 𝑖[𝐽
2, 𝐽𝑦] (277) 

 = 0 + 𝑖(0) = 0 (278) 

Hence 

 [𝐽2, 𝐽+] = 0 (279) 
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Similarly 

 [𝐽2, 𝐽−] = 0 (280) 

ii) Find the commutator of the following 

 [𝐽+, 𝐽𝑧 ] (281) 

Let  

 [𝐽+, 𝐽𝑧 ] = [ 𝐽𝑥 + 𝑖𝐽𝑦, 𝐽𝑧] (282) 

 = (𝐽𝑥 + 𝑖𝐽𝑦)𝐽𝑧 − 𝐽𝑧(𝐽𝑥 + 𝑖𝐽𝑦) (283) 

 = 𝐽𝑥𝐽𝑧 + 𝑖𝐽𝑦𝐽𝑧 − 𝐽𝑧𝐽𝑥 − 𝐽𝑧𝑖𝐽𝑦 (284) 

 = 𝐽𝑥𝐽𝑧 − 𝐽𝑧𝐽𝑥 + 𝑖𝐽𝑦𝐽𝑧 − 𝑖𝐽𝑧𝐽𝑦 (285) 

 = [𝐽𝑥𝐽𝑧 − 𝐽𝑧𝐽𝑥] + 𝑖[𝐽𝑦𝐽𝑧 − 𝐽𝑧𝐽𝑦] (286) 

 = [𝐽𝑥, 𝐽𝑧] + 𝑖[𝐽𝑦, 𝐽𝑧] (287) 

 = −𝑖ħ𝐽𝑦 + 𝑖(𝑖ħ𝐽𝑥) = −𝑖ħ𝐽𝑦 − ħ𝐽𝑥 (288) 

 = −ħ(𝐽𝑥 + 𝑖𝐽𝑦) = −ħ𝐽+ (289) 

 [𝐽+, 𝐽𝑧] = −ħ𝐽+ (290) 

Similarly 

 [𝐽−, 𝐽𝑧] = ħ𝐽− (291) 

iii) Find the commutator of the following 

 [𝐽+, 𝐽− ] (292) 

Let 

 [𝐽+, 𝐽− ] = (𝐽𝑥 + 𝑖𝐽𝑦)(𝐽𝑥 − 𝑖𝐽𝑦) − (𝐽𝑥 − 𝑖𝐽𝑦)(𝐽𝑥 + 𝑖𝐽𝑦) (293) 

 = 𝐽𝑥𝐽𝑥 − 𝑖𝐽𝑥𝐽𝑦 + 𝑖𝐽𝑦𝐽𝑥 + 𝐽𝑦𝐽𝑦 − (𝐽𝑥𝐽𝑥 + 𝑖𝐽𝑥𝐽𝑦 − 𝑖𝐽𝑦𝐽𝑥 + 𝐽𝑦𝐽𝑦) (294) 

 = 𝐽𝑥𝐽𝑥 − 𝑖𝐽𝑥𝐽𝑦 + 𝑖𝐽𝑦𝐽𝑥 + 𝐽𝑦𝐽𝑦 − 𝐽𝑥𝐽𝑥 − 𝑖𝐽𝑥𝐽𝑦 + 𝑖𝐽𝑦𝐽𝑥 − 𝐽𝑦𝐽𝑦 (295) 

 = −𝑖𝐽𝑥𝐽𝑦 + 𝑖𝐽𝑦𝐽𝑥 − 𝑖𝐽𝑥𝐽𝑦 + 𝑖𝐽𝑦𝐽𝑥 (296) 

 = −𝑖[𝐽𝑥𝐽𝑦 − 𝐽𝑦𝐽𝑥] + 𝑖[𝐽𝑦𝐽𝑥 − 𝐽𝑥𝐽𝑦] (297) 
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 = −𝑖[𝐽𝑥, 𝐽𝑦] + 𝑖[𝐽𝑦, 𝐽𝑥] (298) 

 = −𝑖[𝑖ħ𝐽𝑧] + 𝑖[−𝑖ħ𝐽𝑧] (299) 

 = ħ𝐽𝑧 + ħ𝐽𝑧 = 2ħ𝐽𝑧 (300) 

                The commutation relations between angular-momentum and Ladder operators can be mainly divided 
into three categories as discussed below. 

(a) Ladder operator and total angular momentum commutation: 

 [𝐽2, 𝐽+] = 0;       [ 𝐽+, 𝐽
2] = 0 (301) 

 [𝐽2, 𝐽−] = 0;       [ 𝐽−, 𝐽
2] = 0 (302) 

 [𝐽+, 𝐽𝑧] = −ħ𝐽+;        [ 𝐽𝑧, 𝐽+] = ħ𝐽+ (303) 

 [𝐽−, 𝐽𝑧] = ħ𝐽−;       [ 𝐽𝑧, 𝐽−] = −ħ𝐽− (304) 

 [𝐽+, 𝐽−] = 2ħ𝐽𝑧;        [ 𝐽−, 𝐽+] = −2ħ𝐽𝑧 (305) 

(b) Ladder operator and orbital angular momentum commutation: 

 [�̂�2, �̂�+] = 0;       [ �̂�+, �̂�
2] = 0 (306) 

 [�̂�2, �̂�−] = 0;       [ �̂�−, �̂�
2] = 0 (307) 

 [�̂�+, �̂�𝑧] = −ħ�̂�+;        [ �̂�𝑧, �̂�+] = ħ�̂�+ (308) 

 [�̂�−, �̂�𝑧] = ħ�̂�−;       [ �̂�𝑧, �̂�−] = −ħ�̂�− (309) 

 [�̂�+, �̂�−] = 2ħ�̂�𝑧;        [ �̂�−, �̂�+] = −2ħ�̂�𝑧 (310) 

(b) Ladder operator and spin angular momentum commutation: 

 [�̂�2, �̂�+] = 0;       [ �̂�+, �̂�
2] = 0 (311) 

 [�̂�2, �̂�−] = 0;       [ �̂�−, �̂�
2] = 0 (312) 

 [�̂�+, �̂�𝑧] = −ħ�̂�+;        [ �̂�𝑧, �̂�+] = ħ�̂�+ (313) 

 [�̂�−, �̂�𝑧] = ħ�̂�−;       [ �̂�𝑧, �̂�−] = −ħ�̂�− (314) 

 [�̂�+, �̂�−] = 2ħ�̂�𝑧;        [ �̂�−, �̂�+] = −2ħ�̂�𝑧 (315) 
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 Hermitian Operators – Elementary Ideas, Quantum Mechanical Operator

for Linear Momentum, Angular Momentum and Energy as Hermitian 
Operator 

It is a quite well-known fact that all the physical properties are actually real quantities, and therefore 
are bound to have real values. It means that any operator which is used to represent a physical property must 
yield real values. In this section, we will discuss the elementary idea of Hermitian operators (named in honor 
of a great mathematician Charles Hermite), and will also prove that many important operators in quantum 
mechanics like linear momentum, angular momentum and Hamiltonian are Hermitian in nature. 

 Elementary Idea of Hermitian Operator

Every physical property must have real eigen or expectation values, which therefore implies that the 
corresponding operators should have some special characteristics. One of the most important special 
characteristics includes a feature that the Hermitian conjugate of such an operator should be itself. In other 
words, if the Hermitian conjugate of an operator is itself, the operator is called as Hermitian; however, if the 
Hermitian conjugate of an operator is equal to its negative expression, the operator is called as anti-Hermitian 
or skew-Hermitian. Mathematically, we can say that 

𝑖𝑓 𝐴† = 𝐴;       𝐴 𝑖𝑠 𝐻𝑒𝑟𝑚𝑖𝑡𝑖𝑎𝑛 (316) 

𝑖𝑓 𝐴† = −𝐴;   𝐴 𝑖𝑠 𝑎𝑛𝑡𝑖‒𝐻𝑒𝑟𝑚𝑖𝑡𝑖𝑎𝑛 (317) 

Where A is an operator whose Hermitian conjugate is represented by A†. 

However, the obvious question regarding the aforementioned definition would be “what is a 
Hermitian conjugate and how is it obtained”. The answer is “the operator A† will be called as the Hermitian 
conjugate (or adjoint) of operator A if the operation of A† on the complex conjugate of function ψ gives the 
same result as when the A is operated over ψ”. Mathematically, we can say that 

⟨𝜓|𝐴|𝜓⟩  = ∫ 𝜓∗(𝑥)𝐴𝜓(𝑥)𝑑𝑥

+∞

−∞

= ⟨𝜓|𝐴𝜓⟩ = ⟨𝐴†𝜓|𝜓⟩

(318) 

or 

⟨𝐴†𝜑|𝜓⟩ = ⟨𝜑|𝐴𝜓⟩ (319) 

1. Hermitian conjugates of different operators: The Hermitian conjugates of different operators can be
studied in three different categories. 

i) Hermitian conjugates of quantum mechanical operators:

Let Q be any quantum mechanical operator, then by the definition of Hermitian conjugates operator, 
we have the following condition. 
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 ⟨𝜑|𝑄𝜓⟩ = ⟨𝑄†𝜑|𝜓⟩ (320) 

If Q is the momentum operator, then we can proceed as discussed below. 

 
∫𝜓∗�̂�𝑥𝜓𝑑𝑥 = ∫𝜓�̂�𝑥𝜓

∗𝑑𝑥 (321) 

 
∫𝜓∗ (

ℎ

2𝜋𝑖

𝜕

𝜕𝑥
)𝜓𝑑𝑥 = ∫𝜓(

ℎ

2𝜋𝑖

𝜕

𝜕𝑥
)
†

𝜓∗𝑑𝑥 
(322) 

 
∫𝜓(

ℎ

2𝜋𝑖

𝜕

𝜕𝑥
)
†

𝜓∗𝑑𝑥 = ∫𝜓(
ℎ

2𝜋𝑖
)
†

(
𝜕

𝜕𝑥
)
†

𝜓∗𝑑𝑥 
(323) 

 
∫𝜓(

ℎ

2𝜋𝑖

𝜕

𝜕𝑥
)
†

𝜓∗𝑑𝑥 = ∫𝜓 (−
ℎ

2𝜋𝑖
) (−

𝜕

𝜕𝑥
)𝜓∗𝑑𝑥 

(324) 

 
∫𝜓(

ℎ

2𝜋𝑖

𝜕

𝜕𝑥
)
†

𝜓∗𝑑𝑥 = ∫𝜓(
ℎ

2𝜋𝑖

𝜕

𝜕𝑥
)𝜓∗𝑑𝑥 

(325) 

Therefore, we can say that the Hermitian conjugate of the linear momentum operator is itself, and hence it is 
a Hermitian operator. Now from the most primitive definition of Hermitian operators, that all operators which 
correspond to observable quantities, we can say that the Hermitian conjugates of the following operator are 
themselves. 

Operator Hermitian conjugate 

𝑥 𝑥 

𝑥2 𝑥2 

�̂�𝑥 �̂�𝑥 

�̂�𝑥
2 �̂�𝑥

2 

�̂�𝑥 �̂�𝑥 

�̂�(𝑥) �̂�(𝑥) 

�̂� �̂� 

ii) Hermitian conjugates of a constant operator: 

               There are some operators which are complex numbers. The Hermitian conjugates of such operators 
are actually their complex conjugates.  Let we have the operator A 

 �̂� = 𝑎 + 𝑖𝑏 (326) 
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and since the definition of Hermitian operator is 

 ⟨𝜑|𝐴𝜓⟩ = ⟨𝐴†𝜑|𝜓⟩ (327) 

gives the integer as 

 ⟨𝜑|(𝑎 + 𝑖𝑏)𝜓⟩ = ⟨(𝑎 − 𝑖𝑏)𝜑|𝜓⟩ = (𝑎 + 𝑖𝑏)⟨𝜑|𝜓⟩ (328) 

Hence, the Hermitian conjugates of constant operators are their complex conjugates. The Hermitian conjugates 
of some operators are given below. 

Operator Hermitian conjugate 

(𝑎 + 𝑖𝑏) (𝑎 + 𝑖𝑏)† = (𝑎 − 𝑖𝑏) 

(+𝑖𝑏) (+𝑖𝑏)† = (−𝑖𝑏) 

(+
𝑖

4
) (+

𝑖

4
)
†

= (−
𝑖

4
) 

iii) Hermitian conjugates of a mathematical operator: 

               The Hermitian conjugates of mathematical operators can be obtained by obtaining their respective 
integrals as discussed below. Let we have a mathematical operator A 

 
�̂� =

𝑑

𝑑𝑥
 

(326) 

We use the following integral to derive the result 

 
⟨𝜑|

𝑑
𝑑𝑥
𝜓⟩ = ∫ 𝜑∗(𝑥)

𝑑𝜓(𝑥)

𝑑𝑥

+∞

−∞

𝑑𝑥 
(327) 

Integrating the above equation by part, we get 

 
⟨𝜑|

𝑑
𝑑𝑥
𝜓⟩ = [𝜑∗(𝑥)𝜓(𝑥)] − ∫

𝑑𝜑∗(𝑥)

𝑑𝑥
𝜓(𝑥)

+∞

−∞

𝑑𝑥 
(328) 

 
= 0 − ⟨

𝑑
𝑑𝑥
𝜑|𝜓⟩ (329) 

 
= − ⟨

𝑑
𝑑𝑥
𝜑|𝜓⟩ (330) 

Hence, the Hermitian conjugate of d/dx operator is −d/dx. Similarly, we can prove that the Hermitian conjugate 
of d2/dx2 is d2/dx2. 
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2. Properties of Hermitian conjugates: From the definition and properties of scalar product, adjoints or 
Hermitian conjugate show the following properties. 

i) Let C a constant and A as an operator. 

 (𝐶𝐴)† = 𝐶∗𝐴† (331) 

For example 

 
(
𝑖

4

𝜕

𝜕𝑥
)
†

= (
𝑖

4
)
†

(
𝜕

𝜕𝑥
)
†

 
(332) 

 
(
𝑖

4

𝜕

𝜕𝑥
)
†

= (−
𝑖

4
) (−

𝜕

𝜕𝑥
) 

(333) 

 
(
𝑖

4

𝜕

𝜕𝑥
)
†

=
𝑖

4

𝜕

𝜕𝑥
 

(334) 

ii) Let A and B as two operators. 

 (𝐴 + 𝐵)† = 𝐴† + 𝐵† (335) 

For example 

 
(
𝜕

𝜕𝑥
+
𝜕2

𝜕𝑥2
)

†

= (
𝜕

𝜕𝑥
)
†

+ (
𝜕2

𝜕𝑥2
)

†

 
(336) 

 
(
𝜕

𝜕𝑥
+
𝜕2

𝜕𝑥2
)

†

= (−
𝜕

𝜕𝑥
) + (

𝜕2

𝜕𝑥2
) 

(337) 

 
(
𝜕

𝜕𝑥
+
𝜕2

𝜕𝑥2
)

†

= (−
𝜕

𝜕𝑥
+
𝜕2

𝜕𝑥2
) 

(338) 

iii) Let A and B as two operators, then 

 (𝐴𝐵)† = 𝐴†𝐵† (339) 

For example 

 
(
𝜕

𝜕𝑥

𝜕2

𝜕𝑥2
)

†

= (
𝜕

𝜕𝑥
)
†

(
𝜕2

𝜕𝑥2
)

†

 
(340) 

 
(
𝜕

𝜕𝑥

𝜕2

𝜕𝑥2
)

†

= (−
𝜕

𝜕𝑥
)(
𝜕2

𝜕𝑥2
) 

(341) 
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(
𝜕

𝜕𝑥

𝜕2

𝜕𝑥2
)

†

= (−
𝜕3

𝜕𝑥3
) 

(342) 

iv) Let A be the operators, then 

 (𝐴†)
†
= 𝐴 (343) 

For example 

 
[(
𝜕

𝜕𝑥
)
†

]

†

= (
𝜕

𝜕𝑥
) 

(344) 

It should also be noted that the multiplication to an anti-hermitian operator by i makes it Hermitian, while the 
vice-versa is also equally true for adjoints. 

v) For any operator A and its adjoint, the product (AA†) is Hermitian. For instance 

 
(
𝜕

𝜕𝑥
) (−

𝜕

𝜕𝑥
) = −

𝜕2

𝜕𝑥2
 

(343) 

vi) For any operator A and its adjoint, the sum (A+A†) is Hermitian. For instance 

 (𝑥 + 𝑥†) = 2𝑥 (343) 

vii) For any operator A and its adjoint, then AA†+A†A is Hermitian. For instance 

 (𝑖3)(𝑖3)† + (𝑖3)†(𝑖3) = (𝑖3)(−𝑖3) + (−𝑖3)(𝑖3) = 9 + 9 = 18 (343) 

 

3. Characterization of Hermitian operator: We know that the average value of any operator (say Â) in 
quantum mechanics is calculated by the equation given below. 

 
�̅�  = ∫𝜓∗�̂�𝜓𝑑𝑥 (344) 

Where ψ is the wave function representing any quantum mechanical state and ψ* is its complexes conjugate. 
Now because of the fact that the average value of any physical observable must be a real value, we can say 
that the operator used in equation (344) must follow the following condition. 

 �̅�  = �̅�∗ (345) 

 
∫𝜓∗�̂�𝜓𝑑𝑥 = [∫𝜓∗�̂�𝜓𝑑𝑥]

∗

 
(346) 

 
∫𝜓∗�̂�𝜓𝑑𝑥 = ∫(𝜓∗)∗(�̂�𝜓)

∗
𝑑𝑥 (347) 
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∫𝜓∗�̂�𝜓𝑑𝑥 = ∫𝜓(�̂�𝜓)

∗
𝑑𝑥 (348) 

Every linear operator that satisfies the equation (348) for all quantum-mechanically acceptable wave functions 
is called the Hermitian operator. 

               Besides the form given by equation (348), one more popular definition of a Hermitian operator is 
also given below. 

 
∫𝑓∗�̂�𝑔𝑑𝑥 = ∫𝑔(�̂�𝑓)

∗
𝑑𝑥 (349) 

From the equation, we can state that a Hermitian operator must fulfill the condition for the well-behaved 
functions f and g. It can be clearly seen that on the left side of the equation (349), Â is operated over the function 
g; while on the right side, the Â is operated over the function f. However, if we put f = g, the equation (349) is 
also reduced to equation (348); indicating that both definitions are correct. 

 4. Properties of Hermitian operators: The important properties of Hermitian operators are discussed below. 

i) The eigenvalues of Hermitian operators are always real: 

               Let Â be a Hermitian operator with a well-behaved wavefunction ψ representing a quantum 
mechanical state, then we can say that 

 Â𝜓 = 𝑎𝜓 (350) 

Each side of equation (350) can be expressed as an imaginary and a real part as well; with left-hand real part 
equal to the right-hand real part, while left side imaginary part equal to right imaginary one. After taking the 
complex conjugate of equation (350), the imaginary parts would reverse sign but still holding the condition of 
equivalence.    

 Â∗𝜓∗ = 𝑎∗𝜓∗ (351) 

Multiplying the equation (350) by ψ* and integrating over the whole configurational space, we get 

 
∫𝜓∗�̂�𝜓𝑑𝑥 = 𝑎∫𝜓∗𝜓𝑑𝑥 (352) 

Similarly, multiplying the equation (351) by ψ and integrating over the whole configurational space, we get 

 
∫𝜓�̂�∗𝜓∗𝑑𝑥 = 𝑎∗∫𝜓𝜓∗𝑑𝑥 (353) 

Now because left-hand sides of equation (352) and (353) are equal to each other (owing to the Hermitian nature 
of the operator), the right-hand sides are also equivalent; therefore, we can say that 

 
𝑎∗∫𝜓𝜓∗𝑑𝑥 = 𝑎∫𝜓∗𝜓𝑑𝑥 (354) 
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0 = (𝑎 − 𝑎∗)∫𝜓∗𝜓𝑑𝑥 (355) 

Since the wave function is a square-integrable, the integral part of the equation (355) cannot be zero and left 
us with the only possibility given blow. 

 (𝑎 − 𝑎∗) = 0 (356) 

 𝑎 = 𝑎∗ (357) 

The physical interpretation of the result given by equation (357) is that a must be real in order to yield zero 
from equation (356). 

ii) Non-degenerate eigenfunctions of Hermitian operators are always orthogonal to each other: 

               Let ψm and ψn be two square-integrable eigenfunctions of a Hermitian operator Â; therefore, we say 

 �̂�𝜓𝑚 = 𝑎1𝜓𝑚 (358) 

also 

 �̂�∗𝜓𝑛
∗ = 𝑎2𝜓𝑛

∗  (359) 

Multiplying the equation (358) by ψn
* and integrating over the whole configurational space, we get 

 
∫𝜓𝑛

∗ �̂�𝜓𝑚𝑑𝑥 = 𝑎1∫𝜓𝑛
∗𝜓𝑚𝑑𝑥 (360) 

Similarly, multiplying the equation (359) by ψm and integrating over the whole configurational space, we get 

 
∫𝜓𝑚�̂�

∗𝜓𝑛
∗𝑑𝑥 = 𝑎2∫𝜓𝑚𝜓𝑛

∗𝑑𝑥 (361) 

Now because left-hand sides of equation (360) and (361) are equal to each other (owing to the Hermitian nature 
of the operator), the right-hand sides are also equivalent; therefore, we can say that 

 
𝑎1∫𝜓𝑛

∗𝜓𝑚𝑑𝑥 = 𝑎2∫𝜓𝑚𝜓𝑛
∗𝑑𝑥 (362) 

 
(𝑎1 − 𝑎2)∫𝜓𝑚𝜓𝑛

∗𝑑𝑥 = 0 (363) 

Since the wave functions used are non-degenerate i.e. a1 ≠ a2; the only possibility we are left with for the 
equation to be true is given below. 

 
∫𝜓𝑚𝜓𝑛

∗𝑑𝑥 = 0 (364) 

Hence, we can say that ψm and ψn are definitely orthogonal to each other. 
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iii) If two Hermitian operators commute, their product is also a Hermitian operator: 

               Let ψ1 and ψ2 be two well-behaved functions; while �̂� and �̂� as two Hermitian operators. Therefore, 
we can say that 

 
∫𝜓1

∗�̂��̂�𝜓2𝑑𝑥 (365) 

Since �̂� is Hermitian, we can say that  

 
∫𝜓1

∗�̂��̂�𝜓2𝑑𝑥 = ∫𝜓1
∗�̂�(�̂�𝜓2)𝑑𝑥 (366) 

 
∫�̂�∗𝜓1

∗�̂�𝜓2𝑑𝑥 = ∫𝜓1
∗�̂�(�̂�𝜓2)𝑑𝑥 (367) 

Since �̂� is also Hermitian, therefore  

 
∫(�̂�∗𝜓1

∗)�̂�𝜓2𝑑𝑥 = ∫ �̂�
∗�̂�∗𝜓1

∗𝜓2𝑑𝑥 (368) 

From equation (366) and (368), we get 

 
∫𝜓1

∗�̂��̂�𝜓2𝑑𝑥 = ∫ �̂�
∗�̂�∗𝜓1

∗𝜓2𝑑𝑥 (369) 

If the operator �̂� and �̂� commute with each other, we have  

 �̂��̂� = �̂��̂�     𝑜𝑟     �̂�∗�̂�∗ = �̂�∗�̂�∗ (370) 

Therefore, equation (369) becomes 

 
∫𝜓1

∗�̂��̂�𝜓2𝑑𝑥 = ∫ �̂�
∗�̂�∗𝜓1

∗𝜓2𝑑𝑥 (371) 

Which is the condition for the product operator to act as Hermitian. 

iv) If two Hermitian operators do not commute, their commutator operator is anti-Hermitian in nature: 

               Let �̂� and �̂� as two Hermitian operators; therefore, we can say that their commutation must follow 
the following condition. 

 [�̂�, �̂�]
∗
= (�̂��̂�)

∗
− (�̂��̂�)

∗
  (372) 

or 

 [�̂�, �̂�]
∗
= �̂�∗�̂�∗ − �̂�∗�̂�∗ = −(�̂�∗�̂�∗ − �̂�∗�̂�∗) (373) 

or 
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 [�̂�, �̂�]
∗
= −[�̂�, �̂�]

∗ (374) 

 [�̂�, �̂�]
∗
= −[�̂�, �̂�]

∗ (375) 

For instance, consider the commutator of position and momentum operator 

 
[𝑥, �̂�𝑥] = 𝑖

ℎ

2𝜋
  

(376) 

The commutator iħ is antihermitian in nature. 

 The Linear Momentum Operator as Hermitian 

               In order to prove the linear momentum operator as the Hermitian, we must find its Hermitian 
conjugate first. The general expression of linear momentum operator is 

 
�̂�𝑥 =

ℎ

2𝜋𝑖

𝜕

𝜕𝑥
  

(377) 

Let �̂�𝑥
† be the Hermitian conjugate which can be calculated as follows: 

 
�̂�𝑥
† = (

ℎ

2𝜋𝑖
)
†

(
𝜕

𝜕𝑥
)
†

  
(378) 

or 

 
�̂�𝑥
† = (−

ℎ

2𝜋𝑖
) (−

𝜕

𝜕𝑥
)  

(379) 

or 

 
�̂�𝑥
† = (

ℎ

2𝜋𝑖
) (
𝜕

𝜕𝑥
)  

(380) 

Comparing equation (377) and (380), we can see that the Hermitian conjugate of linear momentum operator is 
exactly equal to the linear momentum operator i.e. �̂�𝑥

† = �̂�𝑥; proving that it is defiantly a Hermitian operator. 

 The Angular Momentum Operator as Hermitian 

               In order to prove the angular momentum operator as Hermitian, we must find its Hermitian conjugate 
first. The general expression of the angular momentum operator is 

 
�̂� =

ℎ

2𝜋𝑖
[(𝑦

𝜕

𝜕𝑧
− 𝑧

𝜕

𝜕𝑦
) + (𝑧

𝜕

𝜕𝑥
− 𝑥

𝜕

𝜕𝑧
) + (𝑥

𝜕

𝜕𝑦
− 𝑦

𝜕

𝜕𝑥
)]  

(381) 

Let �̂�𝑥
†  be the Hermitian conjugate which can be calculated as follows: 
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�̂�𝑥
† = [

ℎ

2𝜋𝑖
[(𝑦

𝜕

𝜕𝑧
− 𝑧

𝜕

𝜕𝑦
) + (𝑧

𝜕

𝜕𝑥
− 𝑥

𝜕

𝜕𝑧
) + (𝑥

𝜕

𝜕𝑦
− 𝑦

𝜕

𝜕𝑥
)]]

†

 
(382) 

 
= [

ℎ

2𝜋𝑖
𝑦
𝜕

𝜕𝑧
−
ℎ

2𝜋𝑖
𝑧
𝜕

𝜕𝑦
+
ℎ

2𝜋𝑖
𝑧
𝜕

𝜕𝑥
−
ℎ

2𝜋𝑖
𝑥
𝜕

𝜕𝑧
+
ℎ

2𝜋𝑖
𝑥
𝜕

𝜕𝑦
−
ℎ

2𝜋𝑖
𝑦
𝜕

𝜕𝑥
]
†

 
 

or 

 
�̂�𝑥
† = (

ℎ

2𝜋𝑖
)
†

(𝑦)† (
𝜕

𝜕𝑧
)
†

− (
ℎ

2𝜋𝑖
)
†

(𝑧)† (
𝜕

𝜕𝑦
)
†

+ (
ℎ

2𝜋𝑖
)
†

(𝑧)† (
𝜕

𝜕𝑥
)
†

− (
ℎ

2𝜋𝑖
)
†

(𝑥)† (
𝜕

𝜕𝑧
)
†

+ (
ℎ

2𝜋𝑖
)
†

(𝑥)† (
𝜕

𝜕𝑦
)
†

− (
ℎ

2𝜋𝑖
)
†

(𝑦)† (
𝜕

𝜕𝑥
)
†

   

(383) 

or 

 
�̂�𝑥
† = (−

ℎ

2𝜋𝑖
) (𝑦) (−

𝜕

𝜕𝑧
) − (−

ℎ

2𝜋𝑖
) (𝑧) (−

𝜕

𝜕𝑦
) + (−

ℎ

2𝜋𝑖
) (𝑧) (−

𝜕

𝜕𝑥
)

− (−
ℎ

2𝜋𝑖
) (𝑥) (−

𝜕

𝜕𝑧
) + (−

ℎ

2𝜋𝑖
) (𝑥) (−

𝜕

𝜕𝑦
)

− (−
ℎ

2𝜋𝑖
) (𝑦) (−

𝜕

𝜕𝑥
)   

(384) 

or 

 
�̂�† =

ℎ

2𝜋𝑖
𝑦
𝜕

𝜕𝑧
−
ℎ

2𝜋𝑖
𝑧
𝜕

𝜕𝑦
+
ℎ

2𝜋𝑖
𝑧
𝜕

𝜕𝑥
−
ℎ

2𝜋𝑖
𝑥
𝜕

𝜕𝑧
+
ℎ

2𝜋𝑖
𝑥
𝜕

𝜕𝑦
−
ℎ

2𝜋𝑖
𝑦
𝜕

𝜕𝑥
   

(385) 

 
�̂�† =

ℎ

2𝜋𝑖
[(𝑦

𝜕

𝜕𝑧
− 𝑧

𝜕

𝜕𝑦
) + (𝑧

𝜕

𝜕𝑥
− 𝑥

𝜕

𝜕𝑧
) + (𝑥

𝜕

𝜕𝑦
− 𝑦

𝜕

𝜕𝑥
)]  

(386) 

Comparing equation (381) and (386), we can see that the Hermitian conjugate of the angular momentum 
operator is exactly equal to the angular momentum operator i.e. �̂�† = �̂�; proving that it is defiantly a Hermitian 
operator. 

 The Hamiltonian or Energy Operator as Hermitian 

               In order to prove the energy operator as Hermitian, we must find its Hermitian conjugate first. The 
general expression of the energy operator is 

 
�̂� =

−ℎ2

8𝜋2𝑚

𝜕2

𝜕𝑥2
+ 𝑉(𝑥)  

(387) 

Let �̂�† be the Hermitian conjugate which can be calculated as follows: 
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�̂�† = [
−ℎ2

8𝜋2𝑚

𝜕2

𝜕𝑥2
+ 𝑉(𝑥) ]

† (388) 

or 

�̂�† = [
−ℎ2

8𝜋2𝑚

𝜕

𝜕𝑥

𝜕

𝜕𝑥
+ 𝑉(𝑥) ]

† (389) 

�̂�† = (
−ℎ2

8𝜋2𝑚
)

†

(
𝜕

𝜕𝑥
)
†

(
𝜕

𝜕𝑥
)
†

+ (𝑉(𝑥))†
(390) 

or 

�̂�† = (
−ℎ2

8𝜋2𝑚
)(−

𝜕

𝜕𝑥
) (−

𝜕

𝜕𝑥
) + (𝑉(𝑥)) 

(391) 

�̂�† =
−ℎ2

8𝜋2𝑚

𝜕2

𝜕𝑥2
+ 𝑉(𝑥) 

(392) 

Comparing equation (387) and (392), we can see that the Hermitian conjugate of energy operator is exactly 
equal to the energy operator i.e. �̂�† = �̂�; proving that it is defiantly a Hermitian operator.

 The Average Value of the Square of Hermitian Operators
The expectation value of the square of every Hermitian operator is always positive. In other words, 

we can say that if A is a Hermitian operator, then 

〈𝐴2〉 > 0 (393) 

This can be proved by taking a well-behaved function ψ as discussed below. 

〈𝐴2〉 =
∫𝜓∗𝐴2𝜓𝑑𝜏

∫𝜓∗𝜓𝑑𝜏

(394) 

The right-hand side of equation (394) will be positive only if the numerator as well as denominator, both are 
either positive or negative. Since the wave-function is well-behaved (normalized), the value of denominator is 

∫𝜓∗ 𝜓𝑑𝜏 = 1 
(395) 

Since the denominator is positive, the numerator must also be positive. Now owing to the Hermitian nature of 
operator A, we can evaluate the numerator as given below. 
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∫𝜓∗𝐴2𝜓𝑑𝜏 = ∫𝜓∗𝐴𝐴∗𝜓𝑑𝜏 
(396) 

= ∫(𝜓∗𝐴∗)𝐴𝜓𝑑𝜏
(397) 

or 

= ∫|𝐴𝜓|2 𝑑𝜏
(398) 

Hence, the value of numerator given by equation (398) is greater than zero i.e. positive, making the average 
value of the square of the Hermitian operator (A) also positive. 

 Commuting Operators and Uncertainty Principle (x & p; E & t)
One of the most important properties of operator multiplication is the commutation relation or the 

commutation rule. Two operators, A and B, are said to be commutating or non-commutating depending upon 
the magnitude of their commutator. 

[𝐴,̂ �̂�] = �̂��̂� − �̂��̂� = 0 → 𝐶𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑖𝑛𝑔 (399) 

and 

[𝐴,̂ �̂�] = �̂��̂� − �̂��̂� ≠ 0 → 𝑁𝑜𝑛-𝑐𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑖𝑛𝑔 (400) 

The physical significance of the commutation relations implies in the fact that when two operators commute, 
they possess simultaneous set of eigenfunctions; and their respective physical properties can be evaluated 
simultaneously and accurately. However, if the commutator is non-zero, the respective physical properties 
cannot be obtained simultaneously and accurately; which is actually the popular uncertainty principal. Two of 
the most common uncertainty systems; position-momentum and energy-time; can also be proved from 
commutation relations. 

 Position-Momentum Uncertainty (x & p)

The position-momentum uncertainty can be justified only if the commutation of their operators is 
non-zero. Therefore, we need to find the following. 

[𝑥, �̂�𝑥] (401) 

Let it be operated over a function ψ. We have 

[𝑥, �̂�𝑥  ]𝜓 = 𝑥 �̂�𝑥  𝜓 − �̂�𝑥  �̂�  𝜓 (402) 

or 
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[𝑥, �̂�𝑥  ]𝜓 = 𝑥

ℎ

2𝜋𝑖

𝜕

𝜕𝑥
𝜓 −

ℎ

2𝜋𝑖

𝜕

𝜕𝑥
𝑥 𝜓  

(403) 

 
[𝑥, �̂�𝑥  ]𝜓 =

ℎ

2𝜋𝑖
𝑥
𝜕𝜓

𝜕𝑥
−
ℎ

2𝜋𝑖
𝑥
𝜕𝜓

𝜕𝑥
 −

ℎ

2𝜋𝑖
𝜓
𝜕𝑥

𝜕𝑥
    

(404) 

 
[𝑥, �̂�𝑥  ]𝜓 = −

ℎ

2𝜋𝑖
𝜓 

(405) 

 
[𝑥, �̂�𝑥  ] = −

ℎ

2𝜋𝑖
=
ℎ𝑖

2𝜋
= 𝑖ħ 

(406) 

Equation (406) proves that we cannot determine the position and momentum of a particle along one axis 
simultaneously and accurately. 

 Energy-Time Uncertainty (E & t) 

               The energy-time uncertainty can be justified only if the commutation of their operators is non-zero. 
Therefore, we need to find the following. 

 [�̂�, �̂� ] (407) 

Let it be operated over a function ψ(t). We have 

 [�̂�, �̂� ]𝜓 = �̂� �̂� 𝜓 − �̂��̂� 𝜓 (408) 

or 

 
[�̂�, �̂� ]𝜓 = 𝑡

ℎ

2𝜋𝑖

𝜕

𝜕𝑡
𝜓 −

ℎ

2𝜋𝑖

𝜕

𝜕𝑡
𝑡 𝜓  

(409) 

 
[�̂�, �̂� ]𝜓 =

ℎ

2𝜋𝑖
𝑡
𝜕𝜓

𝜕𝑡
−
ℎ

2𝜋𝑖
𝑡
𝜕𝜓

𝜕𝑡
 −

ℎ

2𝜋𝑖
𝜓
𝜕𝑡

𝜕𝑡
    

(410) 

 
[�̂�, �̂� ]𝜓 = −

ℎ

2𝜋𝑖
𝜓 

(411) 

 
[�̂�, �̂� ] = −

ℎ

2𝜋𝑖
 

(412) 

 
[�̂�, �̂� ] =

ℎ𝑖

2𝜋
 

(413) 

 [�̂�, �̂� ] = 𝑖ħ (414) 

The equation (412) proves that higher the lifetime of the state lower will be energy fluctuation i.e. uncertainty 
ΔE, and the vice-versa is also true. 
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 Schrodinger Wave Equation for a Particle in One Dimensional Box
In the first section of this chapter, we discussed the postulates of quantum mechanics i.e. the step-by-

step procedure to solve a quantum mechanical problem. Now it’s the time to implement those rules to the 
simplest quantum mechanical problem i.e. particle in a one-dimensional box. Consider a particle trapped in a 
one-dimensional box of length “a”, which means that this particle can travel in only one direction only, say 
along x-axis. The potential inside the box is V, while outside to the box it is infinite. 

Figure 7. The particle in a one-dimensional box. 

One other popular depiction of the particle in a one-dimensional box is also given in which the potential is 
shown vertically while the displacement is projected along the horizontal line. 

Figure 8. The second representation particle in a one-dimensional box. 

So far we have considered a quantum mechanical system of a particle trapped in a one-dimensional box. Now 
suppose that we need to find various physical properties associated with different states of this system. Had it 
been a classical system, we would use simple formulas from classical mechanics to determine the value of 
different physical properties. However, being a quantum mechanical system, we cannot use those expressions 
because they would give irrational results. Therefore, we need to use the postulates of quantum mechanics to 
evaluate various physical properties. 

Let ψ be the function that describes all the states of the particle in a one-dimensional box. At this 
point we have no information about the exact mathematical expression of ψ; nevertheless, we know that there 
is one operator that does not need the absolute expression of wave function but uses the symbolic form only, 
the Hamiltonian operator. The operation of Hamiltonian operator over this symbolic form can be rearranged 
to give to construct the Schrodinger wave equation; and we all know that the wave function as well the energy, 
both are the obtained as this second-order differential equation is solved. Mathematically, we can say that 
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 �̂�𝜓 = 𝐸𝜓 (415) 

After putting the value of one-dimensional Hamiltonian in equation (415), we get  

 
[
−ℎ2

8𝜋2𝑚

𝜕2

𝜕𝑥2
+ 𝑉]𝜓 = 𝐸𝜓 

(416) 

or  

 −ℎ2

8𝜋2𝑚

𝜕2𝜓

𝜕𝑥2
+ 𝑉𝜓 = 𝐸𝜓 

(417) 

 −ℎ2

8𝜋2𝑚

𝜕2𝜓

𝜕𝑥2
+ 𝑉𝜓 − 𝐸𝜓 = 0 

(418) 

 𝜕2𝜓

𝜕𝑥2
+
8𝜋2𝑚

ℎ2
𝐸𝜓 −

8𝜋2𝑚

ℎ2
𝑉𝜓 = 0 

(419) 

or 

 𝜕2𝜓

𝜕𝑥2
+
8𝜋2𝑚

ℎ2
(𝐸 − 𝑉)𝜓 = 0 

(420) 

The above-mentioned second order differential equation is the Schrodinger wave equation for a particle 
moving along one dimension only. Since the conditions outside and inside the box are different, the equation 
(420) must be solved separately for both cases. 

1. The solution of Schrodinger wave equation for outside the box: After putting the value of potential 
outside the box in equation (420) i.e. V = ∞, we get 

 𝜕2𝜓

𝜕𝑥2
+
8𝜋2𝑚

ℎ2
(𝐸 −∞)𝜓 = 0 

(421) 

Since E is negligible in comparison to the ∞, the above equation becomes 

 𝜕2𝜓

𝜕𝑥2
−∞𝜓 = 0 

(422) 

 
∞𝜓 =

𝜕2𝜓

𝜕𝑥2
 

(423) 

 
𝜓 =

1

∞

𝜕2𝜓

𝜕𝑥2
= 0 

(424) 

The physical significance of the equation (424) is that the particle cannot go outside the box, and is always 
reflected back when it strikes the boundaries. In other words, as the function describing the existence of 
particles is zero outside the box, the particle cannot exist outside the box. 
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2. Solution of Schrodinger wave equation for inside the box: After putting the value of potential inside the 
box in equation (420) i.e. V = 0, we get 

 𝜕2𝜓

𝜕𝑥2
+
8𝜋2𝑚

ℎ2
(𝐸 − 0)𝜓 = 0 

(425) 

or 

 𝜕2𝜓

𝜕𝑥2
+
8𝜋2𝑚𝐸

ℎ2
𝜓 = 0 

(426) 

Now consider 

 
𝑘2 =

8𝜋2𝑚𝐸

ℎ2
 

(427) 

After using the value from equation (427) in equation (426), we get 

 𝜕2𝜓

𝜕𝑥2
+ 𝑘2𝜓 = 0 

(428) 

The general solution of the above equation is  

 𝜓 = 𝐴 𝑆𝑖𝑛 𝑘𝑥 + 𝐵 𝐶𝑜𝑠 𝑘𝑥 (429) 

Hence, from just the symbolic form we have obtained some kind of expression for the wave function defining 
quantum mechanical states. However, the function given by equation (429) cannot be used to find different 
physical properties or the nature of corresponding quantum mechanical states. The reason is that this 
expression does have some unknown parameters like A, B and k. Since the function describing any quantum 
mechanical state must be single-valued, finite and continuous; the function ψ must also follow these conditions 
to become a “wave-function”. Therefore, these boundary conditions are fulfilled only if the magnitude of ψ is 
zero at the start and at the end of the box (function outside is zero). 

i) The first boundary condition: ψ must vanish when x = 0 i.e. 

 0 = 𝐴 𝑆𝑖𝑛 𝑘(0) + 𝐵 𝐶𝑜𝑠 𝑘(0) (430) 

 0 = 0 + 𝐵 𝐶𝑜𝑠 𝑘(0) (431) 

 𝐵 = 0 (432) 

So, the function ψ is acceptable only if the value of the constant B is zero. After putting the value of B in 
equation (429), we get 

 𝜓 = 𝐴 𝑆𝑖𝑛 𝑘𝑥 + (0) 𝐶𝑜𝑠 𝑘𝑥 (433) 

 𝜓 = 𝐴 𝑆𝑖𝑛 𝑘𝑥 (434) 

Buy the complete book with TOC navigation, 
high resolution images and 

no watermark.

https://www.dalalinstitute.com/books/a-textbook-of-physical-chemistry-volume-1/


68 A Textbook of Physical Chemistry – Volume I 

 Copyright © Mandeep Dalal  

ii) The second boundary condition: ψ must vanish when x = a, i.e., 

 0 = 𝐴 𝑆𝑖𝑛 𝑘𝑎 (435) 

 𝑆𝑖𝑛 𝑘𝑎 = 0 (436) 

Moreover, as we know that 

 𝑆𝑖𝑛 0 = 0               𝑜𝑟               𝑆𝑖𝑛 0𝜋 = 0  (437) 

 𝑆𝑖𝑛 180 = 0               𝑜𝑟               𝑆𝑖𝑛 1𝜋 = 0  (438) 

 𝑆𝑖𝑛 360 = 0               𝑜𝑟               𝑆𝑖𝑛 2𝜋 = 0 (439) 

 𝑆𝑖𝑛 540 = 0               𝑜𝑟               𝑆𝑖𝑛 3𝜋 = 0 (440) 

or 

 𝑆𝑖𝑛 𝑛𝜋 = 0 (441) 

Where n = 0, 1, 2, 3, 4, 5 …. ∞. Comparing equation (436) and equation (441), we conclude that 

 𝑆𝑖𝑛 𝑘𝑎 = 𝑆𝑖𝑛 𝑛𝜋 = 0 (442) 

Which eventually means that 

 𝑘𝑎 = 𝑛𝜋 (443) 

 𝑘 =
𝑛𝜋

𝑎
 (444) 

After putting the value of k in equation (434), we get 

 𝜓 = 𝐴 𝑆𝑖𝑛
𝑛𝜋𝑥

𝑎
 (445) 

The only parameters that is still unknown in equation (445) is A, which can also be obtained by the condition 
of normalization i.e. the function must define the state completely. Therefore, we can say that   

 
∫𝜓2
𝑎

0

= 𝐴2∫𝑆𝑖𝑛2 (
𝑛𝜋𝑥

𝑎
)

𝑎

0

= 1  
(446) 

 𝐴2.
𝑎

2
= 1 (447) 

 
𝐴2 =

2

𝑎
    𝑜𝑟   𝐴 = √

2

𝑎
 

(448) 

After putting the value of A in equation (445), we get 
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𝜓 = √

2

𝑎
 𝑆𝑖𝑛

𝑛𝜋𝑥

𝑎
 

(449) 

Since the function ψ also depends upon the discrete variable n, it is better to write the above equation given as 

 
𝜓𝑛 = √

2

𝑎
 𝑆𝑖𝑛

𝑛𝜋𝑥

𝑎
 

(450) 

The equation (450) represents all the quantum mechanical states of a particle in one-dimensional box. We can 
obtain functions for individual states just by putting different values of “n” allowed by the boundary conditions. 

For first quantum mechanical state i.e n = 1  

 
𝜓1 = √

2

𝑎
 𝑆𝑖𝑛

𝜋𝑥

𝑎
 

(451) 

For second quantum mechanical state i.e n = 2  

 
𝜓2 = √

2

𝑎
 𝑆𝑖𝑛

2𝜋𝑥

𝑎
 

(452) 

For third quantum mechanical state i.e n = 3  

 
𝜓3 = √

2

𝑎
 𝑆𝑖𝑛

3𝜋𝑥

𝑎
 

(453) 

Similarly, we can write the expression for ψ4, ψ5, ψ6 and so on. It is also worthy to note that even though the n 
= 0 is permitted by the boundary condition, we still didn’t use it in equation (450); which is obviously because 
it makes the whole function to collapse to zero. 

               One of the most remarkable results of this procedure that we have not discussed yet is the correlation 
of equation (427) and equation (444). 

 
𝑘2 =

8𝜋2𝑚𝐸

ℎ2
=
𝑛2𝜋2

𝑎2
 

(454) 

 
𝐸𝑛 =

𝑛2ℎ2

8𝑚𝑎2
 

(455) 

The energy of different quantum mechanical states can be obtained by putting n = 1, 2, 3.... ∞ in equation 
(455). Hence, we have obtained the wave-function as well as the energy for a particle in one-dimensional box. 
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 Evaluation of Average Position, Average Momentum and Determination of
Uncertainty in Position and Momentum and Hence Heisenberg’s
Uncertainty Principle

The third postulate of quantum mechanics states that when the wave-function of a particular quantum 
mechanical state is multiplied by the operator of an observable quantity, we get a real value multiplied by the 
wave function itself. However, the value obtained this way can be constant or variable. Mathematically, the 
constant value of the observable quantity can be reported directly, and the function is called an eigenfunction 
of the operator under consideration. If the value of the physical property obtained after multiplying the wave 
function by the corresponding operator is variable i.e. non-eigen, the value can be reported only after averaging 
it over the whole configurational space. 

< 𝑎 > =
∮𝜓∗�̂�𝜓 𝑑𝜏

∮𝜓∗𝜓 𝑑𝜏

(456) 

Since the wave function ψ is normalized, the denominator becomes unity; therefore, equation (456) is reduced 
to the following 

< 𝑎 > = ∮𝜓∗�̂�𝜓 𝑑𝜏
(457) 

Since the operation by the Hamiltonian over the symbolic form has already given the absolute expressions for 
different quantum mechanical states, now we can operate other operators to evaluate their average values. In 
this section, we will determine the average values of position, position-squared, momentum and momentum-
squared; which in turn will be used to prove the Heisenberg’s uncertainty finally. 

 Evaluation of Average Position

The quantum mechanical operator for the position of a particle in one-dimensional is 𝑥; while the 
general form of wave function is 

𝜓𝑛 = √
2

𝑎
 𝑆𝑖𝑛

𝑛𝜋𝑥

𝑎

(458) 

Using this in equation (457), we get 

< 𝑥 > = ∮𝜓∗𝑥 𝜓 𝑑𝜏
(459) 

or 

< 𝑥 > = ∮𝑥 𝜓2 𝑑𝑥
(460) 
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< 𝑥 > = ∫𝑥.  

2

𝑎
𝑆𝑖𝑛2 (

𝑛𝜋𝑥

𝑎
)𝑑𝑥

𝑎

0

=
2

𝑎
∫𝑥 𝑆𝑖𝑛2 (

𝑛𝜋𝑥

𝑎
)𝑑𝑥

𝑎

0

 
(461) 

 
=
2

𝑎
∫𝑥 [

1 − 𝐶𝑜𝑠 (
2𝑛𝜋𝑥
𝑎
)

2
]  𝑑𝑥

𝑎

0

 
(462) 

 
=
1

𝑎
∫ (𝑥 − 𝑥 𝐶𝑜𝑠

2𝑛𝜋𝑥

𝑎
)  𝑑𝑥

𝑎

0

 
(463) 

 
=
1

𝑎
[∫𝑥 𝑑𝑥 − ∫𝑥 𝐶𝑜𝑠 (

2𝑛𝜋𝑥

𝑎
)𝑑𝑥

𝑎

0

 

𝑎

0

] 
(464) 

 
=
1

𝑎
[
𝑎2

2
− 0] =

𝑎

2
 

(465) 

 Evaluation of Average Position-Squared 

               The quantum mechanical operator for the position-squared of a particle in one-dimensional is 𝑥2; 
Using this in equation (457), we get 

 
< 𝑥2 > = ∮𝜓∗ 𝑥2 𝜓 𝑑𝑥 (466) 

 
< 𝑥2 > = ∫𝑥2 .  

2

𝑎
𝑆𝑖𝑛2 (

𝑛𝜋𝑥

𝑎
)𝑑𝑥

𝑎

0

=
2

𝑎
∫𝑥2 𝑆𝑖𝑛2 (

𝑛𝜋𝑥

𝑎
)𝑑𝑥

𝑎

0

 
(467) 

 
=
2

𝑎
∫𝑥2 [

1 − 𝐶𝑜𝑠 (
2𝑛𝜋𝑥
𝑎 )

2
]  𝑑𝑥

𝑎

0

 
(468) 

 
=
2

𝑎
[
𝑎3

6
−

𝑎3

4𝑛2𝜋2
] =

1

𝑎
[
𝑎3

3
−

𝑎3

2𝑛2𝜋2
] 

(469) 

 
=
𝑎2

3
−

𝑎2

2𝑛2𝜋2
 

(470) 

 Evaluation of Average Momentum 

               The quantum mechanical operator for the position-squared of a particle in one-dimensional is �̂�𝑥; 
Using this in equation (457), we get 
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< �̂�𝑥 > = ∮𝜓

∗  
ℎ

2𝜋𝑖

𝜕

𝜕𝑥
 𝜓 𝑑𝑥 

(471) 

 
< �̂�𝑥 > = ∫ [√

2

𝑎
𝑆𝑖𝑛 (

𝑛𝜋𝑥

𝑎
)] 

ℎ

2𝜋𝑖

𝜕

𝜕𝑥
 [√
2

𝑎
𝑆𝑖𝑛 (

𝑛𝜋𝑥

𝑎
)] 𝑑𝑥

𝑎

0

 
(472) 

 
=
ℎ

2𝜋𝑖
[
2

𝑎
]∫ 𝑆𝑖𝑛 (

𝑛𝜋𝑥

𝑎
)(
𝑛𝜋

𝑎
)  𝐶𝑜𝑠 (

𝑛𝜋𝑥

𝑎
)𝑑𝑥

𝑎

0

 
(473) 

 
=
ℎ

2𝜋𝑖
[
2

𝑎
] (
𝑛𝜋

𝑎
)∫ 𝑆𝑖𝑛 (

𝑛𝜋𝑥

𝑎
)  𝐶𝑜𝑠 (

𝑛𝜋𝑥

𝑎
)𝑑𝑥

𝑎

0

 
(474) 

 < �̂�𝑥 > = 0 (475) 

 Evaluation of Average Momentum-Squared 

               The quantum mechanical operator for the position-squared of particle in one-dimensional is �̂�𝑥2; 
Using this in equation (457), we get 

 
< �̂�𝑥

2 > = ∮𝜓∗  (−
ℎ2

4𝜋2
𝜕2

𝜕𝑥2
)  𝜓 𝑑𝑥 

(476) 

 
< �̂�𝑥

2 > = ∫ [√
2

𝑎
𝑆𝑖𝑛 (

𝑛𝜋𝑥

𝑎
)] (−

ℎ2

4𝜋2
𝜕2

𝜕𝑥2
) [√

2

𝑎
𝑆𝑖𝑛 (

𝑛𝜋𝑥

𝑎
)]𝑑𝑥

𝑎

0

 
(477) 

 
= −

ℎ2

4𝜋2
(
2

𝑎
)∫ 𝑆𝑖𝑛 (

𝑛𝜋𝑥

𝑎
) [(−) (

𝑛𝜋

𝑎
)
2

𝑆𝑖𝑛 (
𝑛𝜋𝑥

𝑎
)]𝑑𝑥

𝑎

0

 
(478) 

 
=
ℎ2

4𝜋2
(
2

𝑎
) (
𝑛𝜋

𝑎
)
2

∫𝑆𝑖𝑛2 (
𝑛𝜋𝑥

𝑎
)𝑑𝑥

𝑎

0

 
(479) 

 
=
𝑛2ℎ2

2𝑎3
∫𝑆𝑖𝑛2 (

𝑛𝜋𝑥

𝑎
)𝑑𝑥

𝑎

0

 
(480) 

 
=
𝑛2ℎ2

2𝑎3
∫[
1 − 𝐶𝑜𝑠 (

2𝑛𝜋𝑥
𝑎 )

2
]

𝑎

0

𝑑𝑥 
(481) 
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=
𝑛2ℎ2

2𝑎3
[
𝑥 − 𝑆𝑖𝑛 (

2𝑛𝜋𝑥
𝑎
)

2𝑛𝜋
𝑎

]

0

𝑎

 
(482) 

or 

 
=
𝑛2ℎ2

2𝑎3
(
𝑎

2
) 

(483) 

or 

 
< �̂�𝑥

2 > =
𝑛2ℎ2

4𝑎2
 

(484) 

 The Heisenberg’s Uncertainty 

               In order to prove the Heisenberg’s uncertainty principle from for the quantum mechanical system of 
a particle in one-dimensional box, we first need to find the uncertainties in position and momentum. Once both 
uncertainties are known, we can simply multiply both to yield final result. 

1. Uncertainty in position: The uncertainty in position is simply the difference between the square root of the 
uncertainty in the position-squared. Mathematically, we can say that 

 ∆𝑥 = (< 𝑥2 > −< 𝑥 >2)1/2  (485) 

After putting the values of average position and position-squared from equation (465) and (470) in equation 
(485), we get 

 
∆𝑥 = [(

𝑎2

3
−

𝑎2

2𝑛2𝜋2
) − (

𝑎

2
)
2

]

1/2

  
(486) 

or 

 
∆𝑥 = [(

𝑎2

12
−

𝑎2

2𝑛2𝜋2
)]

1/2

 
(487 

or 

 
∆𝑥 = 𝑎 (

1

12
−

1

2𝑛2𝜋2
)
1/2

 
(488) 

2. Uncertainty in momentum: The uncertainty in momentum is simply the square root of the difference 
between the uncertainty in momentum and uncertainty in the momentum-squared. Mathematically, we can say 
that 
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 ∆𝑝𝑥 = (< 𝑝𝑥
2 > −< 𝑝𝑥 >

2)1/2  (489) 

After putting the values of average position and position-squared from equation (475) and (484) in equation 
(489), we get 

 
∆𝑝𝑥 = [(

𝑛2ℎ2

4𝑎2
) − (0)2]

1/2

  
(490) 

or 

 
∆𝑝𝑥 =

𝑛ℎ

2𝑎
 

(491) 

Now multiplying equation (488) and (491), we get 

 
∆𝑥. ∆𝑝𝑥 = [𝑎 (

1

12
−

1

2𝑛2𝜋2
)
1/2

] (
𝑛ℎ

2𝑎
) 

(492) 

or 

 
=
𝑛ℎ

2
(
1

12
−

1

2𝑛2𝜋2
)
1/2

 
(493) 

Multiply and divide the above equation by 2nπ 

 
∆𝑥. ∆𝑝𝑥 =

𝑛ℎ

2
.
2𝑛𝜋

2𝑛𝜋
(
1

12
−

1

2𝑛2𝜋2
)
1/2

 
(493) 

or 

 
=
𝑛ℎ

2
.
1

2𝑛𝜋
(
4𝑛2𝜋2

12
−
4𝑛2𝜋2

2𝑛2𝜋2
)

1/2

 
(494) 

or 

 
∆𝑥. ∆𝑝𝑥 =

ℎ

4𝜋
(
𝑛2𝜋2

3
− 2)

1/2

 
(495) 

Since n2π2/3 is always greater than 2, we can conclude that 

 
∆𝑥. ∆𝑝𝑥 >

ℎ

4𝜋
 

(496) 

Which is the famous Heisenberg’s uncertainty principle. 
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 Pictorial Representation of the Wave Equation of a Particle in One
Dimensional Box and Its Influence on the Kinetic Energy of the Particle in
Each Successive Quantum Level

The solution of the Schrodinger wave equation for a one-dimensional box gives the wave function as 
well as the energy of the system. The general form of wave-function representing various quantum mechanical 
states is given below. 

𝜓𝑛 = √
2

𝑎
 𝑆𝑖𝑛

𝑛𝜋𝑥

𝑎

(497) 

The energy of the system is given by equation (498) as: 

𝐸𝑛 =
𝑛2ℎ2

8𝑚𝑎2
(498) 

The general depiction of a particle trapped in a one-dimensional box with zero potential inside, along with the 
conditions outside, is shown below. 

Figure 9. The graphical and pictorial representation of various wave-functions of the particle trapped in a 
one-dimensional box. 
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The pictorial representation of the wave-functions in different quantum mechanical states and the 
corresponding energies are shown below. 

 

Figure 10. The graphical and pictorial representation of various wave-functions of the particle trapped in a 
one-dimensional box. 

 

It can be seen clearly from the figure given above that as the number of nodes in wave-function defining a 
particular quantum mechanical state increases, the energy of the state also increases. 

               Furthermore, we can also comment on the symmetry of different wave functions w.r.t the center of 
the box. The symmetry of different states can be classified mainly into two categories as given below. 
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 𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 → 𝐸𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 → 𝜓𝑜𝑑𝑑  

and 

 𝐴𝑛𝑡𝑖𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 → 𝑂𝑑𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 → 𝜓𝑒𝑣𝑒𝑛  

Hence, function like ψ1, ψ3, ψ5 are symmetric while ψ2, ψ4, ψ6 are antisymmetric. Some of the important results 
wavefunction and energy analysis for the particle in a one-dimensional box are listed below. 

 Quantization of Energy 

               Owing to the discrete domain of n i.e. 1, 2, 3 …. ∞; the kinetic energy associated with the particle, 
that is trapped in a one-dimensional box, can also have discrete or quantized values only. Therefore, the 
quantized variable is also popularly called as the “quantum number. 

 

Figure 11. The quantized or discrete energy levels a particle of mass m, confined in a one-dimensional box 
of length a. 

 

It is also worthy to note that the energy gap between successive energy levels shows a linear divergence with 
the increasing value of the quantum number n. Moreover, the energy of particle also depends inversely upon 
the mass and the box length; which eventually means that the energy levels would become continuous if the 
mass or length of the box becomes very large, proving the Bohr’s correspondence principle. 
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 Non-Quantization of the Energy of the Particle 

               If the walls of the box are removed, the boundary conditions will no longer be applicable, and the 
particle would become free to move. In other words, the constant A, B and k can have any value; and therefore, 
states of the particle are not quantized anymore. The general expression for the energy of the particle is 

 
𝐸𝑛 =

𝑛2ℎ2

8𝑚𝑎2
 

(498) 

Hence, in such a case, a freely moving particle like an electron has restrictions and gives a continuous energy 
spectrum. 

 Box length and the Wave Function at the Walls 

               We have already studied that the magnitude of the wave function at the ends of the box must be equal 
to zero to maintain its continuity. This is possible only if the length of the box is an integral multiple of half of 
the wavelength. This can be proved as 

 
𝐸𝑛 =

𝑛2ℎ2

8𝑚𝑎2
  

(499) 

Also 

 
𝐸 =

1

2
𝑚𝑣2 =

𝑚2𝑣2

2𝑚
=
𝑝2

2𝑚
 

(500) 

Using the de-Brogli relation (λ = h/p) in equation (500), we get 

 
 𝐸 =

𝑝2

2𝑚
=
(ℎ/𝜆)2

2𝑚
=

ℎ2

2𝑚𝜆2
 

(501) 

Now from equation (499) and (501), we conclude 

 𝑛2ℎ2

8𝑚𝑎2
=

ℎ2

2𝑚𝜆2
  

(502) 

or 

 𝑛2

4𝑎2
=
1

𝜆2
 

(503) 

or 

 
𝑎 = 𝑛 (

𝜆

2
) 

(504) 

This result of equation (504) also proves that the number of nodes in nth quantum mechanical state are n–1. 
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 The Probability Density  

               The wave density of simply the probability density in the one-dimensional box is not the same at all 
the points. It is more noticeable when the quantum number defining the state is small. However, it becomes 
more and more uniform as n increases. 

 

Figure 12. The graphical and pictorial representation of the probability density of a particle with mass m 
and confined in a one-dimensional box of length a. 

 

               The increasing uniformity of with increasing value of n is in accordance with the Bohr’s 
correspondence principle which states that the results of quantum mechanics approach classical values at very 
high quantum numbers. 
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 Lowest Energy of the Particle
As we have already discussed that the wave function and energy, both are obtained as the solution of 

the Schrodinger wave equation for a particle in a one-dimensional box. The general forms of wave-function 
and energy for various quantum mechanical states are given below. 

𝜓𝑛 = √
2

𝑎
 𝑆𝑖𝑛

𝑛𝜋𝑥

𝑎
 𝑎𝑛𝑑  𝐸𝑛 =

𝑛2ℎ2

8𝑚𝑎2

(505) 

We can write the expressions for ψ1, ψ2, ψ3, ψ4, ψ5, ψ6 and so on; however, it is also worthy to note that even 
though the n = 0 is permitted by the boundary condition, we cannot use it because this would make the whole 
function to collapse to zero. 

Figure 13. All the energy levels a particle in a one-dimensional box of including the “lowest energy of the 
particle”. 

Hence, the minimum acceptable value of the quantum number n is 1 rather than 0; which makes the minimum 
energy of the particle non-zero. 

𝐸1 =
ℎ2

8𝑚𝑎2
(506) 
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This non-zero value is popularly called as the zero-point energy and is a function of the mass of the particle 
and length of the box. 

 

Figure 14. The plot of the wave function (left) and probability for the lowest energy state a particle in one-
trapped in dimensional box. 

 

Hence, in order to create the lowest energy, the particle must occupy the whole box without any node, having 
the highest probability at the center. 
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 Problems
Q 1. State and explain the third postulate of quantum mechanics. 

Q 2. Why should the function representing a quantum mechanical state be continuous, single-valued and finite? 

Q 3. Why don’t we report non-eigenvalues directly? What is the need for their expectation values? 

Q 4. Derive Schrodinger wave equation from the postulates of quantum mechanics. 

Q 5. What is the Max-Born interpretation of “wave function”? Explain in detail by taking the example of one-
dimensional systems. 

Q 6. What is position-time uncertainty? How would you prove it for the photons passing through a slit of 
length d?  

Q 7. What is operator commutation? Evaluate [𝑥2, 𝑝�̂�].

Q 8. Explain the energy-time uncertainty for a particle traveling along x-axis. Also, support your argument 
from the results of operator algebra. 

Q 9. What are Hermitian operators? Prove that the operators for linear momentum and angular momentum are 
Hermitian in nature. 

Q 10. Can the average value for the square of the Hermitian operator be negative? If not, explain why? 

Q 11. Derive and solve the Schrodinger wave equation for a particle moving in a one-dimensional box. 

Q 12. Prove the Heisenberg’s uncertainty principle for the particle trapped in a one-dimensional box of length 
a. Also, comment on its validity in other systems.

Q 13. Give the pictorial representation of the first three quantum mechanical states of a particle in a one-
dimensional box. Also, formulate the corresponding symmetry and number of nodes. 

Q 14. Derive the relation between the box length and the wavelength of the particle in the 1-dimensional box. 

Q 15. What is zero-point energy? How is it created by a particle of mass m which is trapped in a one-
dimensional box of length a. 

Q 16. What is the average position? How is it different from the “most probable position”? 

Q 17. State and explain the Bohr’s correspondence principle. 
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