The Heisenberg's Uncertainty Principle

In quantum mechanical world, the Heisenberg's uncertainty principle (or simply the uncertainty principle) is one of a variety of mathematical inequalities asserting a fundamental limit to the precision with which certain pairs of physical properties of a particle, known as complementary variables or canonically conjugate variables such as position x and momentum p, can be known. The concept was first introduced in 1927, by a German physicist Werner Heisenberg.

The Heisenberg's uncertainty principle states that the more precisely the position of some particle is determined, the less precisely its momentum can be known, and vice versa.

The formal inequality relating the standard deviation of position Δx and the standard deviation of momentum Δp_x was derived by Earle Hesse Kennard later that year and by Hermann Weyl in 1928:

$$\Delta x. \, \Delta p_x \ge \frac{h}{4\pi} \tag{37}$$

or

$$\Delta x \, . \, \Delta p_x \ge \hbar/2 \tag{38}$$

Where \hbar is the reduced Planck's constant, which is obviously equal to the Planck's constant divided by 2π . Besides the equation (37), the is also an energy-time uncertainty relation given by W. Heisenberg which states that higher the lifetime of a quantum mechanical state, less uncertain would be the energy value. Mathematically, it can be shown as:

$$\Delta E. \, \Delta t \ge \frac{h}{2\pi} \tag{39}$$

Where ΔE and Δt represent the uncertainties in the energy and time respectively.

LEGAL NOTICE

This document is an excerpt from the book entitled "A Textbook of Physical Chemistry – Volume 1 by Mandeep Dalal", and is the intellectual property of the Author/Publisher. The content of this document is protected by international copyright law and is valid only for the personal preview of the user who has originally downloaded it from the publisher's website (www.dalalinstitute.com). Any act of copying (including plagiarizing its language) or sharing this document will result in severe civil and criminal prosecution to the maximum extent possible under law.

Position Momentum Uncertainty

Among various kinds of uncertainties, the position-momentum uncertainty is one of the popular kind that arises as a consequence of wave-particle duality. In order to understand the relation, we first need to study the effect of wave behavior on the simultaneous measurement of position about *x*-coordinate and the linear momentum component along the *x*-axis for a microscopic particle.

Consider a beam of particles traveling with a momentum "p" along the y-direction, and this beam finally strikes a narrow slit of width "w". Now, from the principles of optics, we know that the uncertainty in the position of the particle along x-axis must be equal to the slit width. In other words, as the width of the slit is along x-axis, any particle that strikes the detector must have crossed the Δx region i.e. w, the slit width available. However, we exactly don't know where it does cross from. It could be along the center of the slit, or along a line slightly above or below the central trajectory. Therefore, the slit width ($w = \Delta x$) would be equal to a crossing domain that we are uncertain about. However, a diffraction pattern will be observed in the case of microscopic particles because of their wave-like character. The amplitude of the wave at a particular point on the detector represents the number of the particles reaching that point. Now because of this diffraction, the incident beam does not strike only at the central point O but also at the above and below to it. It means that some particles do reach upward and downward to O, suggesting that the part of their linear momentum is transferred along x-axis also.

Figure 4. The diffraction of electron waves by single slit systems.

The *x*-component of linear momentum of the wave (aka particle) diffracted at an angle α can be obtained by the rectangular resolution of the linear momentum vector. The particles diffracted upward and downward at an angle α will yield the *x*-component as *P* sin α and -P sin α , respectively. Now because a large number of particles reach the plate in between $+\alpha$ to $-\alpha$ i.e in between the first minimums, half of the momentum spread in the central diffraction peak should give the uncertainty in the momentum along *x*-axis. Mathematically, we can say that

$$\Delta p_x = P \sin\alpha \tag{40}$$

Multiplying the above equation by the uncertainty in the position i.e. width of the slit used for the measurement purpose, we get

$$\Delta x. \, \Delta p_x = w. \, P \, \sin \alpha \tag{41}$$

Here, it is very important to recall the fact that the condition which must be satisfied to obtain the first minima is that the path difference between the waves reaching the minima point should be an integral multiple of $\lambda/2$.

Figure 5. The calculation for 1st order diffraction for electron wave in single slit systems.

Hence we have the following equalities from the diagram given above.

$$AQ = DQ \tag{42}$$

$$CQ = difference in the path length$$
(43)

Now because the distance of the detector is very large as compared to the slit width, AQ and CQ can be considered parallel to each other i.e. AQ || DQ. Hence, we can say that

$$\langle CAD = \alpha$$
 (45)

also

$$AC = \frac{w}{2} \tag{46}$$

$$CD = \frac{\lambda}{2} \tag{47}$$

From the trigonometric relations, we get

$$\frac{CD}{AC} = \sin\alpha \tag{48}$$

$$CD = AC \sin \alpha \tag{49}$$

Putting the values of AC and CD from equation (46) and (47) in equation (49), we get

$$\frac{c\lambda E w STRY}{\overline{2} = \frac{w}{2} Sin \alpha}$$
(50)

$$DALAL\lambda = w Sin \alpha$$
(info@dalalinstitute.com, +91-9802825820) (51)

Now, after putting the value of w from equation (51) in equation (41), we get

$$\Delta x. \, \Delta p_x = \frac{\lambda}{\sin \alpha}. P \sin \alpha \tag{52}$$

$$\Delta x. \, \Delta p_x = \lambda, P \tag{53}$$

Using the de Broglie relation ($\lambda = h/p$) in equation (53), we get

$$\Delta x.\,\Delta p_x = \frac{h}{P}.\,P\tag{54}$$

$$\Delta x.\,\Delta p_x = h \tag{55}$$

Now because we didn't define the uncertainty very precisely, we should not use the "equal" sign. Therefore, the above equation can be reduced to the following.

$$\Delta x. \, \Delta p_x \approx h \tag{56}$$

This eventually means that decreasing the uncertainty in the position of the incident particle (decreasing the slit width) would result in a higher uncertainty in the momentum along *x*-axis; while the higher slit width does give more precise momentum but small precision in the calculation of the position of the incident particle.

> Energy Time Uncertainty

The uncertainty principle doesn't limit itself to position-momentum only but can also be applied to some other pairs of conjugate variables. All the variable pairs whose products have the same dimension as the Plank's constant h (Js) are said to be a conjugate pair. Besides the position-momentum, another famous uncertainty is relation energy-time because the product of these two quantities (energy × time) also has the unit of h (Js).

$$\Delta E. \Delta t \approx h \tag{57}$$

Where ΔE and Δt are uncertainties in energy and time, respectively. This popular relation can be derived directly from the concept of wave-particle duality. In the quantum mechanical world, a particle is supposed to possess a wave packet. Now, let us consider that this wave packet occupies the Δx region along the direction *x*-direction and travels with a velocity *v*. The time it needs to pass a certain point in *x*-direction has an uncertainty magnitude of Δt , and can be formulated as:

$$\Delta t \equiv \frac{\Delta x}{v} \tag{58}$$

Now because this wave packet occupies the region Δx , the momentum uncertainty along x-axis can be given by the following relation.

(info@dalalinstitut
$$\Delta p_x = \frac{h}{\Delta p_x}$$
 (59)
SINCE $2h^{12}$
 $\Delta x = \frac{h}{\Delta p_x}$ (60)

Putting the value of Δx from equation (60) in equation (58), we get

$$\Delta t = \frac{h}{\nu \Delta p_x} \tag{61}$$

Moreover, we also know that

$$E = \frac{p_x^2}{2m} \tag{62}$$

Differentiating the above equation w.r.t p_x , we get

$$\frac{dE}{dp_x} = \frac{\Delta E}{\Delta p_x} = \frac{p_x}{m} = \frac{mv}{m} = v$$
(63)

$$\Delta E = \frac{dE}{dp_x} \Delta p_x = v. \, \Delta p_x \tag{64}$$

or

Multiplying equation (63) and (64), we get

$$\Delta E.\,\Delta t = v\Delta p_x \cdot \frac{h}{v\Delta p_x} \tag{65}$$

$$\Delta E. \,\Delta t \approx h \tag{66}$$

The physical interpretation of the above relation can be viewed in terms of fluctuating energy level with a total ΔE uncertainty if the system does not stay in it longer than Δt interval of time i.e. lifetime of the state.

LEGAL NOTICE

This document is an excerpt from the book entitled "A Textbook of Physical Chemistry – Volume 1 by Mandeep Dalal", and is the intellectual property of the Author/Publisher. The content of this document is protected by international copyright law and is valid only for the personal preview of the user who has originally downloaded it from the publisher's website (www.dalalinstitute.com). Any act of copying (including plagiarizing its language) or sharing this document will result in severe civil and criminal prosecution to the maximum extent possible under law.

This is a low resolution version only for preview purpose. If you want to read the full book, please consider buying.

Buy the complete book with TOC navigation, high resolution images and no watermark.

Home: https://www.dalalinstitute.com/ Classes: https://www.dalalinstitute.com/classes/ Books: https://www.dalalinstitute.com/books/ Videos: https://www.dalalinstitute.com/videos/ Location: https://www.dalalinstitute.com/location/ Contact Us: https://www.dalalinstitute.com/contact-us/ About Us: https://www.dalalinstitute.com/about-us/

Postgraduate Level Classes		Undergraduate Level Classes		
(NET-JRF & IIT-GATE)		(M.Sc Entran	(M.Sc Entrance & IIT-JAM)	
Admission		Admission		
Regular Program	Distance Learning	Regular Program	Distance Learning	
Test Series	Result	Test Series	Result	

A Textbook of Physical Chemistry - Volume 1

"A Textbook of Physical Chemistry – Volume 1 by Mandeep Dalal" is now available globally; including India, America and most of the European continent. Please ask at your local bookshop or get it online here. READ MORE

Join the revolution by becoming a part of our community and get all of the member benefits like downloading any PDF document for your personal preview.

Sign Up

A TEXTBOOK OF PHYSICAL CHEMISTRY Volume I

MANDEEP DALAL

First Edition

DALAL INSTITUTE

Table of Contents

CHAP	TER 1	11
Qua	ntum Mechanics – I	11
*	Postulates of Quantum Mechanics	11
*	Derivation of Schrodinger Wave Equation	16
*	Max-Born Interpretation of Wave Functions	21
*	The Heisenberg's Uncertainty Principle	24
*	Quantum Mechanical Operators and Their Commutation Relations	29
*	Hermitian Operators – Elementary Ideas, Quantum Mechanical Operator for Linear Mom Angular Momentum and Energy as Hermitian Operator	entum,
*	The Average Value of the Square of Hermitian Operators	62
*	Commuting Operators and Uncertainty Principle (x & p; E & t)	63
*	Schrodinger Wave Equation for a Particle in One Dimensional Box	65
*	Evaluation of Average Position, Average Momentum and Determination of Uncertainty in F and Momentum and Hence Heisenberg's Uncertainty Principle	osition
*	Pictorial Representation of the Wave Equation of a Particle in One Dimensional Box Influence on the Kinetic Energy of the Particle in Each Successive Quantum Level	and Its 75
*	Lowest Energy of the Particle	80
*	Problems	82
*	Bibliography	83
CHAP	TER 2	84
Ther	rmodynamics – I	84
*	Brief Resume of First and Second Law of Thermodynamics	84
*	Entropy Changes in Reversible and Irreversible Processes	87
*	Variation of Entropy with Temperature, Pressure and Volume	92
*	Entropy Concept as a Measure of Unavailable Energy and Criteria for the Spontaneity of R	eaction 94
*	Free Energy, Enthalpy Functions and Their Significance, Criteria for Spontaneity of a Proce	ss 98
*	Partial Molar Quantities (Free Energy, Volume, Heat Concept)	104
*	Gibb's-Duhem Equation	108
*	Problems	111
*	Bibliography	112

CHAP	CHAPTER 3	
Cher	nical Dynamics – I	113
*	Effect of Temperature on Reaction Rates	113
*	Rate Law for Opposing Reactions of Ist Order and IInd Order	119
*	Rate Law for Consecutive & Parallel Reactions of Ist Order Reactions	127
*	Collision Theory of Reaction Rates and Its Limitations	135
*	Steric Factor	141
*	Activated Complex Theory	143
*	Ionic Reactions: Single and Double Sphere Models	147
*	Influence of Solvent and Ionic Strength	152
*	The Comparison of Collision and Activated Complex Theory	157
*	Problems	158
*	Bibliography	159
CHAP'	ГЕК 4	160
Elect	rochemistry – I: Ion-Ion Interactions	160
*	The Debye-Huckel Theory of Ion-Ion Interactions	160
*	Potential and Excess Charge Density as a Function of Distance from the Central Ion	168
*	Debye-Huckel Reciprocal Length	173
*	Ionic Cloud and Its Contribution to the Total Potential	176
*	Debye-Huckel Limiting Law of Activity Coefficients and Its Limitations	178
*	Ion-Size Effect on Potential	185
*	Ion-Size Parameter and the Theoretical Mean - Activity Coefficient in the Case of Ionic C Finite-Sized Ions	louds with 187
*	Debye-Huckel-Onsager Treatment for Aqueous Solutions and Its Limitations	190
*	Debye-Huckel-Onsager Theory for Non-Aqueous Solutions	195
*	The Solvent Effect on the Mobility at Infinite Dilution	196
*	Equivalent Conductivity (Λ) vs Concentration $C^{1/2}$ as a Function of the Solvent	198
*	Effect of Ion Association Upon Conductivity (Debye-Huckel-Bjerrum Equation)	200
*	Problems	209
*	Bibliography	210
CHAP'	ΓER 5	211
Qua	ntum Mechanics – II	211
*	Schrodinger Wave Equation for a Particle in a Three Dimensional Box	211

*	The Concept of Degeneracy Among Energy Levels for a Particle in Three Dimensional Box	215
*	Schrodinger Wave Equation for a Linear Harmonic Oscillator & Its Solution by Polynomial N	Method 217
*	Zero Point Energy of a Particle Possessing Harmonic Motion and Its Consequence	229
*	Schrodinger Wave Equation for Three Dimensional Rigid Rotator	231
*	Energy of Rigid Rotator	241
*	Space Quantization	243
*	Schrodinger Wave Equation for Hydrogen Atom: Separation of Variable in Polar Sp	herical
	Coordinates and Its Solution	247
*	Principal, Azimuthal and Magnetic Quantum Numbers and the Magnitude of Their Values	268
*	Probability Distribution Function	276
*	Radial Distribution Function	278
*	Shape of Atomic Orbitals $(s, p \& d)$	281
*	Problems	287
*	Bibliography	288
CHAP	ГЕR 6	289
Ther	modynamics – II	289
*	Clausius-Clapeyron Equation	289
*	Law of Mass Action and Its Thermodynamic Derivation	293
*	Third Law of Thermodynamics (Nernst Heat Theorem, Determination of Absolute E	ntropy,
	Unattainability of Absolute Zero) And Its Limitation	296
*	Phase Diagram for Two Completely Miscible Components Systems	304
*	Eutectic Systems (Calculation of Eutectic Point)	311
*	Systems Forming Solid Compounds A _x B _y with Congruent and Incongruent Melting Points	321
*	Phase Diagram and Thermodynamic Treatment of Solid Solutions	332
*	Problems	342
*	Bibliography	343
CHAP	TER 7	344
Cher	nical Dynamics – II	344
*	Chain Reactions: Hydrogen-Bromine Reaction, Pyrolysis of Acetaldehyde, Decomposit	tion of 344
*	Photochemical Reactions (Hydrogen-Bromine & Hydrogen-Chlorine Reactions)	
*	General Treatment of Chain Reactions (Ortho-Para Hydrogen Conversion and Hydrogen-B	romine
•	Reactions)	358

*	Apparent Activation Energy of Chain Reactions	362
*	Chain Length	364
*	Rice-Herzfeld Mechanism of Organic Molecules Decomposition (Acetaldehyde)	366
*	Branching Chain Reactions and Explosions (H2-O2 Reaction)	368
*	Kinetics of (One Intermediate) Enzymatic Reaction: Michaelis-Menten Treatment	371
*	Evaluation of Michaelis's Constant for Enzyme-Substrate Binding by Lineweaver-Burk H Eadie-Hofstee Methods	Plot and 375
*	Competitive and Non-Competitive Inhibition	378
*	Problems	388
*	Bibliography	389
СНАР	TER 8	390
Elect	trochemistry – II: Ion Transport in Solutions	390
*	Ionic Movement Under the Influence of an Electric Field	390
*	Mobility of Ions	393
*	Ionic Drift Velocity and Its Relation with Current Density	394
*	Einstein Relation Between the Absolute Mobility and Diffusion Coefficient	398
*	The Stokes-Einstein Relation	401
*	The Nernst-Einstein Equation	403
*	Walden's Rule	404
*	The Rate-Process Approach to Ionic Migration	406
*	The Rate-Process Equation for Equivalent Conductivity	410
*	Total Driving Force for Ionic Transport: Nernst-Planck Flux Equation	412
*	Ionic Drift and Diffusion Potential	416
*	The Onsager Phenomenological Equations	418
*	The Basic Equation for the Diffusion	419
*	Planck-Henderson Equation for the Diffusion Potential	422
*	Problems	425
*	Bibliography	426
INDEX	ζ	427

Mandeep Dalal (M.Sc, Ph.D, CSIR UGC - NET JRF, IIT - GATE) Founder & Director, Dalal Institute Contact No: +91-9802825820 Homepage: www.mandeepdalal.com E-Mail: dr.mandeep.dalal@gmail.com Mandeep Dalal is an Indian research scholar who is primarily working in the field of Science and Philosophy. He received his Ph.D in Chemistry from Maharshi Dayanand University, Rohtak, in 2018. He is also the Founder and Director of "Dalal Institute", an India-based educational organization which is trying to revolutionize the mode of higher education in Chemistry across the globe. He has published more than 40 research papers in various international scientific journals, including mostly from Elsevier (USA), IOP (UK) and Springer (Netherlands).

Main Market, Sector-14, Rohtak, Haryana-124001 (+91-9802825820, info@dalalinstitute.com) www.dalalinstitute.com