Hermitian Operators - Elementary Ideas, Quantum Mechanical Operator for Linear Momentum, Angular Momentum and Energy as Hermitian Operator

It is a quite well-known fact that all the physical properties are actually real quantities, and therefore are bound to have real values. It means that any operator which is used to represent a physical property must yield real values. In this section, we will discuss the elementary idea of Hermitian operators (named in honor of a great mathematician Charles Hermite), and will also prove that many important operators in quantum mechanics like linear momentum, angular momentum and Hamiltonian are Hermitian in nature.

$>$ Elementary Idea of Hermitian Operator

Every physical property must have real eigen or expectation values, which therefore implies that the corresponding operators should have some special characteristics. One of the most important special characteristics includes a feature that the Hermitian conjugate of such an operator should be itself. In other words, if the Hermitian conjugate of an operator is itself, the operator is called as Hermitian; however, if the Hermitian conjugate of an operator is equal to its negative expression, the operator is called as anti-Hermitian or skew-Hermitian. Mathematically, we can say that

$$
\begin{gather*}
\text { if } A^{\dagger}=A ; \quad A \text { is Hermitian } \tag{316}\\
\text { if } A^{\dagger}=-A ; \quad A \text { is anti-Hermitian } \tag{317}
\end{gather*}
$$

Where A is an operator whose Hermitian conjugate is represented by A^{\dagger}.
However, the obvious question regarding the aforementioned definition would be "what is a Hermitian conjugate and how is it obtained". The answer is "the operator A^{\dagger} will be called as the Hermitian conjugate (or adjoint) of operator A if the operation of A^{\dagger} on the complex conjugate of function ψ gives the same result as when the A is operated over $\psi "$. Mathematically, we can say that

$$
\begin{equation*}
\langle\psi| A|\psi\rangle=\int_{-\infty}^{+\infty} \psi^{*}(x) A \psi(x) d x=\langle\psi \mid A \psi\rangle=\left\langle A^{\dagger} \psi \mid \psi\right\rangle \tag{318}
\end{equation*}
$$

or

$$
\begin{equation*}
\left\langle A^{\dagger} \varphi \mid \psi\right\rangle=\langle\varphi \mid A \psi\rangle \tag{319}
\end{equation*}
$$

1. Hermitian conjugates of different operators: The Hermitian conjugates of different operators can be studied in three different categories.
i) Hermitian conjugates of quantum mechanical operators:

Let Q be any quantum mechanical operator, then by the definition of Hermitian conjugates operator, we have the following condition.

$$
\begin{equation*}
\langle\varphi \mid Q \psi\rangle=\left\langle Q^{\dagger} \varphi \mid \psi\right\rangle \tag{320}
\end{equation*}
$$

If Q is the momentum operator, then we can proceed as discussed below.

$$
\begin{gather*}
\int \psi^{*} \hat{p}_{x} \psi d x=\int \psi \hat{p}_{x} \psi^{*} d x \tag{321}\\
\int \psi^{*}\left(\frac{h}{2 \pi i} \frac{\partial}{\partial x}\right) \psi d x=\int \psi\left(\frac{h}{2 \pi i} \frac{\partial}{\partial x}\right)^{\dagger} \psi^{*} d x \tag{322}\\
\int \psi\left(\frac{h}{2 \pi i} \frac{\partial}{\partial x}\right)^{\dagger} \psi^{*} d x=\int \psi\left(\frac{h}{2 \pi i}\right)^{\dagger}\left(\frac{\partial}{\partial x}\right)^{\dagger} \psi^{*} d x \tag{323}\\
\int \psi\left(\frac{h}{2 \pi i} \frac{\partial}{\partial x}\right)^{\dagger} \psi^{*} d x=\int \psi\left(-\frac{h}{2 \pi i}\right)\left(-\frac{\partial}{\partial x}\right) \psi^{*} d x \tag{324}\\
\int \psi\left(\frac{h}{2 \pi i} \frac{\partial}{\partial x}\right)^{\dagger} \psi^{*} d x=\int \psi\left(\frac{h}{2 \pi i} \frac{\partial}{\partial x}\right) \psi^{*} d x \tag{325}
\end{gather*}
$$

Therefore, we can say that the fermitian conjugate of the linear momentum operator is itself, and hence it is a Hermitian operator. Now from the most primitive definition of Hermitian operators, that all operators which correspond to observable quantities, we can say that the Hermitian conjugates of the following operator are themselves.

Operator WWW.dalalinstitute.comHermitian conjugate

| \hat{x} | |
| :---: | :---: | :---: |
| \hat{x}^{2} | \hat{x} |
| \hat{p}_{x} | \hat{x}^{2} |
| \hat{p}_{x}^{2} | \hat{p}_{x} |
| \hat{T}_{x} | \hat{T}_{x} |
| $\hat{V}(x)$ | $\hat{V}(x)$ |
| \hat{H} | \hat{H} |

ii) Hermitian conjugates of a constant operator:

There are some operators which are complex numbers. The Hermitian conjugates of such operators are actually their complex conjugates. Let we have the operator A

$$
\begin{equation*}
\hat{A}=a+i b \tag{326}
\end{equation*}
$$

and since the definition of Hermitian operator is

$$
\begin{equation*}
\langle\varphi \mid A \psi\rangle=\left\langle A^{\dagger} \varphi \mid \psi\right\rangle \tag{327}
\end{equation*}
$$

gives the integer as

$$
\begin{equation*}
\langle\varphi \mid(a+i b) \psi\rangle=\langle(a-i b) \varphi \mid \psi\rangle=(a+i b)\langle\varphi \mid \psi\rangle \tag{328}
\end{equation*}
$$

Hence, the Hermitian conjugates of constant operators are their complex conjugates. The Hermitian conjugates of some operators are given below.

Operator	Hermitian conjugate $(a+i b)$ $(+i b)$
$(a+i b)^{\dagger}=(a-i b)$	
$\left(+\frac{i}{4}\right)$	$\left(+\frac{i}{4}\right)^{\dagger}=(-i b)$

iii) Hermitian conjugates of a mathemátical operator:ISIIRY

The Hermitian conjugates of mathematical operators can be obtained by obtaining their respective integrals as discussed below. Let we have a mathematical operator A
(info@dalalinstitute.cord, $+91-9802825820$)
www.dal Allin $\frac{d x}{d x}$ itute.com
We use the following integral to deriye the result NCR 2012 ,

$$
\begin{equation*}
\left.\left.|\varphi| \frac{d}{d x} \psi\right\rangle \int_{-\infty}^{+\infty} \int_{-\infty}^{\infty} \varphi_{4}^{*}(x)\right] \frac{d \psi(x)}{d x} d x \tag{327}
\end{equation*}
$$

Integrating the above equation by part, we get

$$
\begin{align*}
\left\langle\varphi \left\lvert\, \frac{d}{d x} \psi\right.\right\rangle=\left[\varphi^{*}\right. & (x) \psi(x)]-\int_{-\infty}^{+\infty} \frac{d \varphi^{*}(x)}{d x} \psi(x) d x \tag{328}\\
= & 0-\left\langle\left.\frac{d}{d x} \varphi \right\rvert\, \psi\right\rangle \tag{329}\\
= & -\left\langle\left.\frac{d}{d x} \varphi \right\rvert\, \psi\right\rangle \tag{330}
\end{align*}
$$

Hence, the Hermitian conjugate of $d / d x$ operator is $-d / d x$. Similarly, we can prove that the Hermitian conjugate of $d^{2} / d x^{2}$ is $d^{2} / d x^{2}$.
2. Properties of Hermitian conjugates: From the definition and properties of scalar product, adjoints or Hermitian conjugate show the following properties.
i) Let C a constant and A as an operator.

$$
\begin{equation*}
(C A)^{\dagger}=C^{*} A^{\dagger} \tag{331}
\end{equation*}
$$

For example

$$
\begin{align*}
& \left(\frac{i}{4} \frac{\partial}{\partial x}\right)^{\dagger}=\left(\frac{i}{4}\right)^{\dagger}\left(\frac{\partial}{\partial x}\right)^{\dagger} \tag{332}\\
& \left(\frac{i}{4} \frac{\partial}{\partial x}\right)^{\dagger}=\left(-\frac{i}{4}\right)\left(-\frac{\partial}{\partial x}\right) \tag{333}\\
& \left(\frac{i}{4} \frac{\partial}{\partial x}\right)^{\dagger}=-\frac{i}{4} \frac{\partial}{\partial x} \tag{334}
\end{align*}
$$

ii) Let A and B as two operators.

For example

iii) Let A and B as two operators, then

$$
\begin{equation*}
(A B)^{\dagger}=A^{\dagger} B^{\dagger} \tag{339}
\end{equation*}
$$

For example

$$
\begin{align*}
& \left(\frac{\partial}{\partial x} \frac{\partial^{2}}{\partial x^{2}}\right)^{\dagger}=\left(\frac{\partial}{\partial x}\right)^{\dagger}\left(\frac{\partial^{2}}{\partial x^{2}}\right)^{\dagger} \tag{340}\\
& \left(\frac{\partial}{\partial x} \frac{\partial^{2}}{\partial x^{2}}\right)^{\dagger}=\left(-\frac{\partial}{\partial x}\right)\left(\frac{\partial^{2}}{\partial x^{2}}\right) \tag{341}
\end{align*}
$$

$$
\begin{equation*}
\left(\frac{\partial}{\partial x} \frac{\partial^{2}}{\partial x^{2}}\right)^{\dagger}=\left(-\frac{\partial^{3}}{\partial x^{3}}\right) \tag{342}
\end{equation*}
$$

$i v)$ Let A be the operators, then

$$
\begin{equation*}
\left(A^{\dagger}\right)^{\dagger}=A \tag{343}
\end{equation*}
$$

For example

$$
\begin{equation*}
\left[\left(\frac{\partial}{\partial x}\right)^{\dagger}\right]^{\dagger}=\left(\frac{\partial}{\partial x}\right) \tag{344}
\end{equation*}
$$

It should also be noted that the multiplication to an anti-hermitian operator by i makes it Hermitian, while the vice-versa is also equally true for adjoints.
v) For any operator A and its adjoint, the product $\left(A A^{\dagger}\right)$ is Mermitian. For instance

$$
\begin{equation*}
\left(\frac{\partial}{\partial x}\right)\left(-\frac{\partial}{\partial x}\right)==\frac{\partial^{2}}{\partial x^{2}} \tag{343}
\end{equation*}
$$

vi) For any operator A and its adjoint, the'sum $\left(A+A^{\dagger}\right)$ is Hermitian. For instance-

vii) For any operator A and its adjoint, then $A A^{*}+A^{\dagger} A$ is Hermitian. For instance

$$
\begin{equation*}
(i 3)(i 3) \dagger+(i 3)^{\dagger}(i 3)=(i 3)(-i 3)+(-i 3)(i 3)=9+9=18 \tag{343}
\end{equation*}
$$

3. Characterization of Hermitian operator: We know that the ayerage value of any operator (say \hat{A}) in quantum mechanics is calculated by the equation given below.

$$
\begin{equation*}
\bar{A}=\int \psi^{*} \hat{A} \psi d x \tag{344}
\end{equation*}
$$

Where ψ is the wave function representing any quantum mechanical state and ψ^{*} is its complexes conjugate. Now because of the fact that the average value of any physical observable must be a real value, we can say that the operator used in equation (344) must follow the following condition.

$$
\begin{gather*}
\bar{A}=\bar{A}^{*} \tag{345}\\
\int \psi^{*} \hat{A} \psi d x=\left[\int \psi^{*} \hat{A} \psi d x\right]^{*} \tag{346}\\
\int \psi^{*} \hat{A} \psi d x=\int\left(\psi^{*}\right)^{*}(\hat{A} \psi)^{*} d x \tag{347}
\end{gather*}
$$

$$
\begin{equation*}
\int \psi^{*} \hat{A} \psi d x=\int \psi(\hat{A} \psi)^{*} d x \tag{348}
\end{equation*}
$$

Every linear operator that satisfies the equation (348) for all quantum-mechanically acceptable wave functions is called the Hermitian operator.

Besides the form given by equation (348), one more popular definition of a Hermitian operator is also given below.

$$
\begin{equation*}
\int f^{*} \hat{A} g d x=\int g(\hat{A} f)^{*} d x \tag{349}
\end{equation*}
$$

From the equation, we can state that a Hermitian operator must fulfill the condition for the well-behaved functions f and g. It can be clearly seen that on the left side of the equation (349), \hat{A} is operated over the function g; while on the right side, the \hat{A} is operated over the function f. However, if we put $f=g$, the equation (349) is also reduced to equation (348); indicating, that both definitions are correct.
4. Properties of Hermitian operators: The important propetities of Hermitian operators are discussed below.
i) The eigenvalues of Hermitian operators are atways real:"

Let \hat{A} be a Hermitian operator with a well-behaved wavefunction ψ representing a quantum mechanical state, then we can say that
(info@dalalinstitut Â $\psi=\overline{0}=\hat{a \psi}+91-9802825820$)
Each side of equation (350) can be expressed asanlimaginary andareal part as well; with left-hand real part equal to the right-hand real part, while left side imaginary part equal toright jmaginary one. After taking the complex conjugate of equation (350), the imaginary parts would reverse sigu but still holding the condition of equivalence.

$$
\begin{equation*}
\hat{A}^{*} \psi^{*}=a^{*} \psi^{*} \tag{351}
\end{equation*}
$$

Multiplying the equation (350) by ψ^{*} and integrating over the whole configurational space, we get

$$
\begin{equation*}
\int \psi^{*} \hat{A} \psi d x=a \int \psi^{*} \psi d x \tag{352}
\end{equation*}
$$

Similarly, multiplying the equation (351) by ψ and integrating over the whole configurational space, we get

$$
\begin{equation*}
\int \psi \hat{A}^{*} \psi^{*} d x=a^{*} \int \psi \psi^{*} d x \tag{353}
\end{equation*}
$$

Now because left-hand sides of equation (352) and (353) are equal to each other (owing to the Hermitian nature of the operator), the right-hand sides are also equivalent; therefore, we can say that

$$
\begin{equation*}
a^{*} \int \psi \psi^{*} d x=a \int \psi^{*} \psi d x \tag{354}
\end{equation*}
$$

$$
\begin{equation*}
0=\left(a-a^{*}\right) \int \psi^{*} \psi d x \tag{355}
\end{equation*}
$$

Since the wave function is a square-integrable, the integral part of the equation (355) cannot be zero and left us with the only possibility given blow.

$$
\begin{gather*}
\left(a-a^{*}\right)=0 \tag{356}\\
a=a^{*} \tag{357}
\end{gather*}
$$

The physical interpretation of the result given by equation (357) is that a must be real in order to yield zero from equation (356).
ii) Non-degenerate eigenfunctions of Hermitian operators are always orthogonal to each other:

Let ψ_{m} and ψ_{n} be two square-integrable eigenfunctions of a Hermitian operator \hat{A}; therefore, we say
also

Multiplying the equation (358) by $\bar{\psi}_{n}^{*}$ and integrating over the whole configurational space, we get

$$
\begin{equation*}
\text { (info@dal } \int \psi_{n}^{*} \hat{A} \psi_{m} d x=a_{1}+\psi_{n}^{*} \bar{\psi}_{m}^{98} d x 2825820 \text {) } \tag{360}
\end{equation*}
$$

Similarly, multiplying the equation (359) by ψ_{m} and integrating oyer the whole configurational space, we get

$$
\begin{equation*}
\int \sin _{n \in \hat{A}_{*}^{*}} \psi_{n}^{*} d x=a_{2}-\int_{\text {dur }} \psi_{m_{1}} \psi_{n}^{*} d x \tag{361}
\end{equation*}
$$

Now because left-hand sides of equation (360) and (361) are equal to each other (owing to the Hermitian nature of the operator), the right-hand sides are also equivalent; therefore, we can say that

$$
\begin{gather*}
a_{1} \int \psi_{n}^{*} \psi_{m} d x=a_{2} \int \psi_{m} \psi_{n}^{*} d x \tag{362}\\
\left(a_{1}-a_{2}\right) \int \psi_{m} \psi_{n}^{*} d x=0 \tag{363}
\end{gather*}
$$

Since the wave functions used are non-degenerate i.e. $a_{1} \neq a_{2}$; the only possibility we are left with for the equation to be true is given below.

$$
\begin{equation*}
\int \psi_{m} \psi_{n}^{*} d x=0 \tag{364}
\end{equation*}
$$

Hence, we can say that ψ_{m} and ψ_{n} are definitely orthogonal to each other.
iii) If two Hermitian operators commute, their product is also a Hermitian operator:

Let ψ_{1} and ψ_{2} be two well-behaved functions; while \hat{A} and \hat{B} as two Hermitian operators. Therefore, we can say that

$$
\begin{equation*}
\int \psi_{1}^{*} \hat{A} \hat{B} \psi_{2} d x \tag{365}
\end{equation*}
$$

Since \hat{A} is Hermitian, we can say that

$$
\begin{align*}
& \int \psi_{1}^{*} \hat{A} \hat{B} \psi_{2} d x=\int \psi_{1}^{*} \hat{A}\left(\hat{B} \psi_{2}\right) d x \tag{366}\\
& \int \hat{A}^{*} \psi_{1}^{*} \hat{B} \psi_{2} d x=\int \psi_{1}^{*} \hat{A}\left(\hat{B} \psi_{2}\right) d x \tag{367}
\end{align*}
$$

Since \hat{B} is also Hermitian, therefore

From equation (366) and (368), we get

$$
D^{D} N \iint \psi_{1}^{*} \hat{A} \hat{B} \psi_{2} d x=\int \hat{B}^{*} \hat{A}^{*} \psi_{1}^{*} \psi_{2} d x \int^{T}
$$

If the operator \hat{A} and \hat{B}
(info@dalalinstitute.com, +91-9802825820) ommute with each other, we have itute.com

$$
\begin{equation*}
\hat{A} \hat{B}=\hat{B} \hat{A} \text { or } \hat{A}^{*} \hat{B}_{2}^{*}=\hat{B}^{*} \hat{A}^{*} \tag{370}
\end{equation*}
$$

Therefore, equation (369) becomes

$$
\begin{equation*}
\int \psi_{1}^{*} \hat{A} \hat{B} \psi_{2} d x=\int \hat{A}^{-1} \hat{A}^{*} \psi_{1}^{*} \psi_{2}^{\prime} d x \tag{371}
\end{equation*}
$$

Which is the condition for the product operator to act as Hermitian.
iv) If two Hermitian operators do not commute, their commutator operator is anti-Hermitian in nature:

Let \hat{A} and \hat{B} as two Hermitian operators; therefore, we can say that their commutation must follow the following condition.

$$
\begin{equation*}
[\hat{A}, \hat{B}]^{*}=(\hat{A} \widehat{B})^{*}-(\hat{B} \hat{A})^{*} \tag{372}
\end{equation*}
$$

or

$$
\begin{equation*}
[\hat{A}, \hat{B}]^{*}=\hat{A}^{*} \widehat{B}^{*}-\hat{B}^{*} \hat{A}^{*}=-\left(\hat{B}^{*} \hat{A}^{*}-\hat{A}^{*} \widehat{B}^{*}\right) \tag{373}
\end{equation*}
$$

or

$$
\begin{align*}
& {[\hat{A}, \widehat{B}]^{*}=-[\hat{B}, \hat{A}]^{*}} \tag{374}\\
& {[\hat{A}, \widehat{B}]^{*}=-[\hat{B}, \hat{A}]^{*}} \tag{375}
\end{align*}
$$

For instance, consider the commutator of position and momentum operator

$$
\begin{equation*}
\left[\hat{x}, \hat{p}_{x}\right]=i \frac{h}{2 \pi} \tag{376}
\end{equation*}
$$

The commutator $i \hbar$ is antihermitian in nature.

The Linear Momentum Operator as Hermitian

In order to prove the linear momentum operator as the Hermitian, we must find its Hermitian conjugate first. The general expression of linear momentum operator is

$$
\begin{align*}
& \hat{p}_{x} \# \frac{h}{2 \pi i} \frac{\partial}{\partial x} \tag{377}\\
& A_{1}
\end{align*}
$$

Let \hat{p}_{x}^{\dagger} be the Hermitian conjugate which can be calculated as follows:
or

$$
\begin{equation*}
\hat{p}_{x}^{+}=\left(-\frac{1}{2 \pi i}\right)\left(-\frac{\partial}{\partial x}\right) \tag{379}
\end{equation*}
$$

or

$$
\begin{equation*}
\hat{p}_{x}^{+}=\left(\frac{h^{h}}{2 \pi i}\right)\left(\frac{\partial}{\partial x}\right) \tag{380}
\end{equation*}
$$

Comparing equation (377) and (380), we can see that the Hermitian conjugate of linear momentum operator is exactly equal to the linear momentum operator i.e. $\hat{p}_{x}^{\dagger}=\hat{p}_{x}$; proving that it is defiantly a Hermitian operator.

> The Angular Momentum Operator as Hermitian

In order to prove the angular momentum operator as Hermitian, we must find its Hermitian conjugate first. The general expression of the angular momentum operator is

$$
\begin{equation*}
\hat{L}=\frac{h}{2 \pi i}\left[\left(y \frac{\partial}{\partial z}-z \frac{\partial}{\partial y}\right)+\left(z \frac{\partial}{\partial x}-x \frac{\partial}{\partial z}\right)+\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right)\right] \tag{381}
\end{equation*}
$$

Let \hat{L}_{x}^{\dagger} be the Hermitian conjugate which can be calculated as follows:

$$
\begin{gather*}
\hat{L}_{x}^{\dagger}=\left[\frac{h}{2 \pi i}\left[\left(y \frac{\partial}{\partial z}-z \frac{\partial}{\partial y}\right)+\left(z \frac{\partial}{\partial x}-x \frac{\partial}{\partial z}\right)+\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right)\right]\right]^{\dagger} \tag{382}\\
= \\
{\left[\frac{h}{2 \pi i} y \frac{\partial}{\partial z}-\frac{h}{2 \pi i} z \frac{\partial}{\partial y}+\frac{h}{2 \pi i} z \frac{\partial}{\partial x}-\frac{h}{2 \pi i} x \frac{\partial}{\partial z}+\frac{h}{2 \pi i} x \frac{\partial}{\partial y}-\frac{h}{2 \pi i} y \frac{\partial}{\partial x}\right]^{\dagger}}
\end{gather*}
$$

or

$$
\begin{align*}
& \hat{L}_{x}^{\dagger}=\left(\frac{h}{2 \pi i}\right)^{\dagger}(y)^{\dagger}\left(\frac{\partial}{\partial z}\right)^{\dagger}-\left(\frac{h}{2 \pi i}\right)^{\dagger}(z)^{\dagger}\left(\frac{\partial}{\partial y}\right)^{\dagger}+\left(\frac{h}{2 \pi i}\right)^{\dagger}(z)^{\dagger}\left(\frac{\partial}{\partial x}\right)^{\dagger} \tag{383}\\
&-\left(\frac{h}{2 \pi i}\right)^{\dagger}(x)^{\dagger}\left(\frac{\partial}{\partial z}\right)^{\dagger}+\left(\frac{h}{2 \pi i}\right)^{\dagger}(x)^{\dagger}\left(\frac{\partial}{\partial y}\right)^{\dagger}-\left(\frac{h}{2 \pi i}\right)^{\dagger}(y)^{\dagger}\left(\frac{\partial}{\partial x}\right)^{\dagger}
\end{align*}
$$

or

$$
\begin{equation*}
\hat{L}_{x}^{\dagger}=\left(-\frac{h}{2 \pi i}\right)(y)\left(-\frac{\partial}{\partial z}\right)-\left(-\frac{h}{2 \pi i}\right)(z)\left(-\frac{\partial}{\partial y}\right)+\left(-\frac{h}{2 \pi i}\right)(z)\left(-\frac{\partial}{\partial x}\right) \tag{384}
\end{equation*}
$$

$$
\begin{gather*}
\hat{L}^{\dagger}=\frac{h}{2 \pi i} y \frac{\partial}{\partial z}-\frac{h}{2 \pi i} \frac{\partial}{\partial y}+\frac{h}{2 \pi i} z \frac{\partial}{\partial x} \frac{h}{2 \pi i} \times \frac{\partial}{\partial z}+\frac{h}{2 \pi i} \times \frac{\partial}{\partial y}-\frac{h}{2 \pi i} y \frac{\partial}{\partial x} \tag{385}\\
\left.\hat{L}^{\dagger}=\frac{h}{2 \pi i}\left[\left(y \frac{\partial}{\partial z}-z \frac{\partial}{\partial y}\right)+\left(z \frac{\partial}{\partial x}-x\right) \frac{\partial}{\partial z}\right)+\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right)\right] \tag{386}
\end{gather*}
$$

Comparing equation (381) and (386), we can see that the Hermitian conjugate of the angular momentum operator is exactly equal to the angular momentum operator i.e. $\hat{L}^{\dagger}=\hat{L}$; proving that it is defiantly a Hermitian operator.

> The Hamiltonian or Energy Operator as Hermitian

In order to prove the energy operator as Hermitian, we must find its Hermitian conjugate first. The general expression of the energy operator is

$$
\begin{equation*}
\widehat{H}=\frac{-h^{2}}{8 \pi^{2} m} \frac{\partial^{2}}{\partial x^{2}}+V(x) \tag{387}
\end{equation*}
$$

Let \widehat{H}^{\dagger} be the Hermitian conjugate which can be calculated as follows:

$$
\begin{equation*}
\widehat{H}^{\dagger}=\left[\frac{-h^{2}}{8 \pi^{2} m} \frac{\partial^{2}}{\partial x^{2}}+V(x)\right]^{\dagger} \tag{388}
\end{equation*}
$$

or

$$
\begin{gather*}
\widehat{H}^{\dagger}=\left[\frac{-h^{2}}{8 \pi^{2} m} \frac{\partial}{\partial x} \frac{\partial}{\partial x}+V(x)\right]^{\dagger} \tag{389}\\
\widehat{H}^{\dagger}=\left(\frac{-h^{2}}{8 \pi^{2} m}\right)^{\dagger}\left(\frac{\partial}{\partial x}\right)^{\dagger}\left(\frac{\partial}{\partial x}\right)^{\dagger}+(V(x))^{\dagger} \tag{390}
\end{gather*}
$$

or

$$
\begin{gather*}
\widehat{H}^{\dagger}=\left(\frac{-h^{2}}{8 \pi^{2} m}\right)\left(-\frac{\partial}{\partial x}\right)\left(-\frac{\partial}{\partial x}\right)+(V(x)) \tag{391}\\
\widehat{H}^{\dagger}=\frac{-h^{2}}{8 \pi^{2} m} \frac{\partial^{2}}{\partial x^{2}}+V(x) \tag{392}
\end{gather*}
$$

Comparing equation (387) and (392), we can see that the Hermitian conjugate of energy operator is exactly equal to the energy operator i.e. $\widehat{H}^{\dagger}=\widehat{H}$; proving that it is defiantly a Hermitian operator.

LEGAL NOTICE

This document is an excerpt from the book entitled "A Textbook of Physical Chemistry - Volume 1 by Mandeep Dalal", and is the intellectual property of the Author/Publisher. The content of this document is protected by international copyright law and is valid only for the personal preview of the user who has originally downloaded it from the publisher's website (www.dalalinstitute.com). Any act of copying (including plagiarizing its language) or sharing this document will result in severe civil and criminal prosecution to the maximum extent possible under law.

This is a low resolution version only for preview purpose. If you want to read the full book, please consider buying.

Buy the complete book with TOC navigation, high resolution images and no watermark.

Home

CLASSES

Publications

Are you interested in books (Print and Ebook) published by Dalal Institute?

READ MORE

VIDEOS

Video Lectures

Want video lectures in chemistry for CSIR UGC

- NET IRF ITT-GATE, M.SC Entrance, IIT-IAM.

UPSC, ISRO, IISC, TIFR, DRDO, BARC, JEST, GRE,

Home: https://www.dalalinstitute.com/ Classes: https://www.dalalinstitute.com/classes/ Books: https://www.dalalinstitute.com/books/ Videos: https://www.dalalinstitute.com/videos/ Location: https://www.dalalinstitute.com/location/ Contact Us: https://www.dalalinstitute.com/contact-us/ About Us: https://www.dalalinstitute.com/about-us/

Postgraduate Level Classes

(NET-JRF \& IIT-GATE)
Admission
Regular Program
Test Series

Distance Learning
Result

Undergraduate Level Classes
(M.Sc Entrance \& IIT-JAM)

Admission
Regular Program Distance Learning
Test Series Result

A Textbook of Physical Chemistry - Volume 1

"A Textbook of Physical Chemistry - Volume 1 by Mandeep Dalal" is now available globally; including India, America and most of the European continent. Please ask at your local bookshop or get it online here. READ MORE

Join the revolution by becoming a part of our community and get all of the member benefits like downloading any PDF document for your personal preview.

International Edition

A TEXTBOOK OF PHYSICAL CHEMISTRY

 Volume IMANDEEP DALAL

Table of Contents

CHAPTER 1 11
Quantum Mechanics - I 11

* Postulates of Quantum Mechanics 11
* Derivation of Schrodinger Wave Equation 16
* Max-Born Interpretation of Wave Functions 21
* The Heisenberg's Uncertainty Principle 24
* Quantum Mechanical Operators and Their Commutation Relations 29
* Hermitian Operators - Elementary Ideas, Quantum Mechanical Operator for Linear Momentum, Angular Momentum and Energy as Hermitian Operator 52
* The Average Value of the Square of Hermitian Operators 62
* Commuting Operators and Uncertainty Principle ($x \& p ; E \& t$) 63
* Schrodinger Wave Equation for a Particle in One Dimensional Box 65
* Evaluation of Average Position, Average Momentum and Determination of Uncertainty in Position and Momentum and Hence Heisenberg's Uncertainty Principle 70
* Pictorial Representation of the Wave Equation of a Particle in One Dimensional Box and Its Influence on the Kinetic Energy of the Particle in Each Successive Quantum Level 75
* Lowest Energy of the Particle 80
* Problems 82
* Bibliography 83
CHAPTER 2 84
Thermodynamics - I 84
* Brief Resume of First and Second Law of Thermodynamics 84
* Entropy Changes in Reversible and Irreversible Processes 87
* Variation of Entropy with Temperature, Pressure and Volume 92
* Entropy Concept as a Measure of Unavailable Energy and Criteria for the Spontaneity of Reaction 94
* Free Energy, Enthalpy Functions and Their Significance, Criteria for Spontaneity of a Process 98
* Partial Molar Quantities (Free Energy, Volume, Heat Concept) 104
* Gibb's-Duhem Equation. 108
* Problems 111
* Bibliography 112
CHAPTER 3 113
Chemical Dynamics - I 113
* Effect of Temperature on Reaction Rates 113
* Rate Law for Opposing Reactions of Ist Order and IInd Order 119
* Rate Law for Consecutive \& Parallel Reactions of Ist Order Reactions 127
* Collision Theory of Reaction Rates and Its Limitations 135
- Steric Factor 141
* Activated Complex Theory 143
* Ionic Reactions: Single and Double Sphere Models 147
* Influence of Solvent and Ionic Strength 152
* The Comparison of Collision and Activated Complex Theory 157
* Problems 158
* Bibliography 159
CHAPTER 4 160
Electrochemistry - I: Ion-Ion Interactions 160
* The Debye-Huckel Theory of Ion-Ion Interactions 160
* Potential and Excess Charge Density as a Function of Distance from the Central Ion 168
* Debye-Huckel Reciprocal Length 173
* Ionic Cloud and Its Contribution to the Total Potential 176
* Debye-Huckel Limiting Law of Activity Coefficients and Its Limitations 178
* Ion-Size Effect on Potential 185
* Ion-Size Parameter and the Theoretical Mean - Activity Coefficient in the Case of Ionic Clouds with Finite-Sized Ions 187
* Debye-Huckel-Onsager Treatment for Aqueous Solutions and Its Limitations 190
* Debye-Huckel-Onsager Theory for Non-Aqueous Solutions 195
* The Solvent Effect on the Mobility at Infinite Dilution 196
* Equivalent Conductivity (4) vs Concentration $C^{1 / 2}$ as a Function of the Solvent 198
* Effect of Ion Association Upon Conductivity (Debye-Huckel-Bjerrum Equation) 200
* Problems 209
* Bibliography 210
CHAPTER 5 211
Quantum Mechanics - II 211
* Schrodinger Wave Equation for a Particle in a Three Dimensional Box 211
* The Concept of Degeneracy Among Energy Levels for a Particle in Three Dimensional Box 215
* Schrodinger Wave Equation for a Linear Harmonic Oscillator \& Its Solution by Polynomial Method217
* Zero Point Energy of a Particle Possessing Harmonic Motion and Its Consequence 229
* Schrodinger Wave Equation for Three Dimensional Rigid Rotator 231
* Energy of Rigid Rotator 241
* Space Quantization 243
* Schrodinger Wave Equation for Hydrogen Atom: Separation of Variable in Polar Spherical Coordinates and Its Solution 247
* Principal, Azimuthal and Magnetic Quantum Numbers and the Magnitude of Their Values 268
* Probability Distribution Function 276
* Radial Distribution Function 278
* Shape of Atomic Orbitals $(s, p \& d)$ 281
* Problems 287
* Bibliography 288
CHAPTER 6 289
Thermodynamics - II. 289
* Clausius-Clapeyron Equation 289
* Law of Mass Action and Its Thermodynamic Derivation 293
* Third Law of Thermodynamics (Nernst Heat Theorem, Determination of Absolute Entropy, Unattainability of Absolute Zero) And Its Limitation 296
* Phase Diagram for Two Completely Miscible Components Systems 304
* Eutectic Systems (Calculation of Eutectic Point) 311
* Systems Forming Solid Compounds $\mathrm{A}_{x} \mathrm{~B}_{y}$ with Congruent and Incongruent Melting Points 321
* Phase Diagram and Thermodynamic Treatment of Solid Solutions. 332
* Problems 342
* Bibliography 343
CHAPTER 7 344
Chemical Dynamics - II 344
* Chain Reactions: Hydrogen-Bromine Reaction, Pyrolysis of Acetaldehyde, Decomposition of Ethane 344
* Photochemical Reactions (Hydrogen-Bromine \& Hydrogen-Chlorine Reactions) 352
* General Treatment of Chain Reactions (Ortho-Para Hydrogen Conversion and Hydrogen-Bromine Reactions) 358
* Apparent Activation Energy of Chain Reactions 362
* Chain Length 364
* Rice-Herzfeld Mechanism of Organic Molecules Decomposition (Acetaldehyde) 366
* Branching Chain Reactions and Explosions ($\mathrm{H}_{2}-\mathrm{O}_{2}$ Reaction) 368
* Kinetics of (One Intermediate) Enzymatic Reaction: Michaelis-Menten Treatment 371
* Evaluation of Michaelis's Constant for Enzyme-Substrate Binding by Lineweaver-Burk Plot andEadie-Hofstee Methods375
* Competitive and Non-Competitive Inhibition 378
* Problems 388
* Bibliography 389
CHAPTER 8 390
Electrochemistry - II: Ion Transport in Solutions 390
* Ionic Movement Under the Influence of an Electric Field 390
* Mobility of Ions 393
* Ionic Drift Velocity and Its Relation with Current Density 394
* Einstein Relation Between the Absolute Mobility and Diffusion Coefficient 398
* The Stokes-Einstein Relation 401
* The Nernst-Einstein Equation 403
* Walden's Rule 404
* The Rate-Process Approach to Ionic Migration 406
* The Rate-Process Equation for Equivalent Conductivity 410
* Total Driving Force for Ionic Transport: Nernst-Planck Flux Equation 412
* Ionic Drift and Diffusion Potential 416
* The Onsager Phenomenological Equations 418
* The Basic Equation for the Diffusion 419
* Planck-Henderson Equation for the Diffusion Potential 422
* Problems 425
* Bibliography 426
INDEX 427

Mandeep Dalal

(M.Sc, Ph.D, CSIR UGC - NET JRF, IIT - GATE)

Founder \& Director, Dalal Institute
Contact No: +91-9802825820
Homepage: www.mandeepdalal.com
E-Mail: dr.mandeep.dalal@gmail.com

Mandeep Dalal is an Indian research scholar who is primarily working in the field of Science and Philosophy. He received his Ph.D in Chemistry from Maharshi Dayanand University, Rohtak, in 2018. He is also the Founder and Director of "Dalal Institute", an India-based educational arganization which is trying to revolutionize the mode of higher education in Chemistry across the globe. He has published more than 40 research papers in various international scientific journals, including mostly from Elsevier (USA), IDP (UK) and Springer (Netherlands).

A TEXTBOOK OF INORGANIC GHEMISTRY = YOLUME L. H. H. IY
A TEXTBOOK OF PHYSICAL CHEMISTRY - YOLUME I. H. III, IY
(TEXTBOOK OF ORGANIC CHEMISTRY - YOLUME I, H. M. IY

