Free Energy, Enthalpy Functions and Their Significance, Criteria for Spontaneity of a Process

The thermodynamic free energy and enthalpies are extremely useful concepts in the field of chemical thermodynamics. The decrease or increase in free energy is the maximum amount of work that a thermodynamic system can perform in a process at a constant temperature. The sign of thermodynamic free energy simply indicates whether a process is thermodynamically forbidden or feasible. The thermodynamic free energy is a state function, like internal energy and enthalpy. In this section, we will discuss the significance of enthalpy and free energy functions, and the corresponding spontaneity of a process.

> Enthalpy or Heat Content

As most of the reactions are carried out in open vessels where the atmospheric pressure remains the same, it must be very interesting to study the heat change that occurs during the course of a chemical reaction. The work-done by gas in the piston-fitted chamber against constant pressure (*P*) with ΔV volume change is

w

$$= -P\Delta V \tag{99}$$

LEGAL NOTICE

This document is an excerpt from the book entitled "A Textbook of Physical Chemistry – Volume 1 by Mandeep Dalal", and is the intellectual property of the Author/Publisher. The content of this document is protected by international copyright law and is valid only for the personal preview of the user who has originally downloaded it from the publisher's website (www.dalalinstitute.com). Any act of copying (including plagiarizing its language) or sharing this document will result in severe civil and criminal prosecution to the maximum extent possible under law.

From the first law of thermodynamics, we know that

$$q = \Delta U - w \tag{100}$$

Where q is the heat absorbed and ΔU is the change in the internal energy of the system respectively. After putting the value of work of expansion from equation (99) in equation (100), we get

$$q_p = \Delta U - (-P\Delta V) \tag{101}$$

$$q_p = \Delta U + P \Delta V \tag{102}$$

The symbol q_p is used instead of q because the whole process is carried out at constant pressure. Now suppose that this heat absorbed increases the internal energy from U_1 to U_2 and volume from V_1 to V_2 i.e.

$$\Delta U = U_2 - U_1 \tag{103}$$

$$v = V_1$$
 (104)

After putting the values from equation (103) and (104) into equation (102), we get

$$q_p = (U_2 - U_1) + P(V_2 - V_1)$$
(105)

The quantity U + PV is now defined as the enthalpy of the system; and since U, P and V all are state functions, the quantity U + PV must also be a state function. Mathematically, the enthalpy can be shown as

 $(info@da q_p = (U_2 + PV_2) - (U_1 + PV_1)_{2825820})$

$$H = U + PV \tag{107}$$

Therefore, if the enthalpy changes initial state H_1 to the final state H_2 at constant pressure, we have

$$H_1 = U_1 + PV_1 \tag{108}$$

$$H_2 = U_2 + PV_2 \tag{109}$$

After putting the values from equation (108) and (109) in equation (106), we get

$$q_p = H_2 - H_1 \tag{110}$$

$$q_p = \Delta H \tag{111}$$

Hence, we can conclude that the enthalpy change of a system is simply the amount of heat absorbed at constant pressure. Besides, if we compare equation (102) and equation (111), we have

$$\Delta H = \Delta U + P \Delta V \tag{112}$$

(106)

Therefore, the enthalpy change of a reaction may also be defined as the sum of its internal energy change and pressure-volume work done.

The physical significance of enthalpy: There is a certain amount of energy stored in every substance or material called internal energy. This energy comprises of many forms like kinetic, rotational, vibrational or inter-particle interactions. Moreover; like pressure, volume and internal energy; the enthalpy function is also an extensive property. Now recalling the expression of enthalpy again

$$H = U + PV \tag{113}$$

We can say that the enthalpy is nothing but the internal energy that is available for the conversion into heat; which is why the enthalpy is also called as "heat content". Furthermore, like internal energy, the heat content or enthalpy is also not obtainable absolutely. However, like some other thermodynamic quantities, the parameter that is needed in the various analysis is enthalpy change which can be derived experimentally.

Enthalpy as the criteria for the spontaneity of reaction: The general expression for the enthalpy of a system is given below.

$$H = \overline{U} + PV \tag{114}$$

After differentiating the equation (114), we get

$$D \land dH = dU + VdP + PdV \qquad (115)$$

$$\frac{dH - VdP = dU + PdV = 0202020200}{WWW.datalinstitute.com}$$
(116)

Also as we know that, for the spontaneity of a process

$$TdS \ge dU + PdV \tag{117}$$

Now after putting the value of dU + VdP from equation (116) in equation (117), we get

$$TdS \ge dH - VdP \tag{118}$$

or

$$dH \le TdS + VdP \tag{119}$$

For a spontaneous or irreversible process dH must be less than the sum of multiplication of temperature and entropy change, and pressure-volume work.

However, the above relation is reduced to the following if the entropy and pressure of the system are kept constant i.e. dS = 0 and dP = 0.

$$(dH)_{S,P} \le 0 \tag{120}$$

Here it is worthy to recall that the sign '=' is for reversible reactions whereas '<' condition is applicable to spontaneity or irreversibility of a reaction.

> Helmholtz Free Energy or Work Function

The Helmholtz free energy is typically denoted by the symbol '*A*', which is derived from the German word "Arbeit" meaning work. The Helmholtz free energy can be defined mathematically as

$$A = U - TS \tag{121}$$

Where T, S and U are temperature, entropy, and internal energy, respectively. Moreover; like U, T and S; free energy A is also a state function. Since A is independent of its previous state, we can say that

$$A_1 = U_1 - TS_1 \tag{122}$$

$$A_2 = U_2 - TS_2 \tag{123}$$

Where the subscript 1 and 2 represent the initial and final state. The change in Helmholtz free energy in going from initial to final state can obtain by subtracting equation (122) from equation (123) as

$$A_2 - A_1 = (U_2 - TS_2) - (U_1 - TS_1)$$
(124)

$$\Delta A = (U_2 - U_1) - T(S_2 - S_1)$$
(125)

$$\Delta A = \Delta U - T\Delta S \tag{126}$$

Where ΔU and ΔS are the change in internal energy and entropy, respectively. Therefore, the Helmholtz free energy change can be described as the difference of internal energy change and the multiplication of entropy change multiplied with the temperature at which the reaction is actually carried out.

The physical significance of Helmholtz free energy: From the definition of entropy change, we know that

$$\Delta S = \frac{q_{rev}}{T} \tag{127}$$

Also, from the first law of thermodynamics, for the work of expansion we have

$$\Delta U = q_{rev} - w_{max} \tag{128}$$

Putting the values of ΔS and ΔU from equation (127) and (128) in equation (126), we get

$$\Delta A = (q_{rev} - w_{max}) - T\left(\frac{q_{rev}}{T}\right)$$

$$= q_{rev} - w_{max} - q_{rev}$$
(129)

or

$$-\Delta A = w_{max} \tag{130}$$

Hence, the decrease in Helmholtz free energy at constant temperature is equal to the maximum work done by the system; that is why the Helmholtz free energy is also called as work function.

Helmholtz free energy as the criteria for the spontaneity of reaction: The general expression for the enthalpy of a system is given below.

$$A = U - TS \tag{131}$$

After differentiating the equation (131), we get

$$dA = dU - TdS - SdT \tag{132}$$

$$TdS = dU - SdT - dA \tag{133}$$

Also as we know that, for the spontaneity of a process

$$TdS \ge dU + PdV \tag{134}$$

Now after putting the value of TdS from equation (133) in equation (134), we get

$$dU - SdT - dA \ge dU + PdV \tag{135}$$

or

$$-SdT - dA \ge PdV$$
(136)
$$dA \le -PdV - SdT$$
(137)

For a spontaneous or irreversible process, dA must be less than the negative sum of multiplication of pressure and volume change with the multiplication of entropy and temperature change.

However, the above relation is reduced to the following if the volume and temperature of the system are kept constant i.e. dV = 0 and dT = 0.

$$(dA)_{V,T} \le 0 \tag{138}$$

Here it is worthy to recall that the sign = is for reversible reactions whereas < condition is applicable to spontaneity or irreversibility of a reaction.

Gibbs Free Energy or Gibbs Function

The Gibbs free energy is typically denoted by the symbol 'G', and can be defined mathematically as

$$G = H - TS \tag{139}$$

Where T, S and H are temperature, entropy, and enthalpy, respectively. Moreover; like H, T and S; the Gibbs free energy G is also a state function. Since G is independent of its previous state, we can say that

$$G_1 = H_1 - TS_1 \tag{140}$$

$$G_2 = H_2 - TS_2 \tag{141}$$

Where the subscript 1 and 2 represent the initial and final state. The change in Gibbs free energy in going from initial to final state can obtain by subtracting equation (141) from equation (140) as

$$G_2 - G_1 = (H_2 - TS_2) - (H_1 - TS_1)$$
(142)

$$\Delta G = (H_2 - H_1) - T(S_2 - S_1) \tag{143}$$

$$\Delta G = \Delta H - T \Delta S \tag{144}$$

Where ΔH and ΔS are the change in enthalpy and entropy, respectively. Therefore, the Gibbs free energy change can be described as the difference of enthalpy change and the multiplication of entropy change multiplied with the temperature at which the reaction is actually carried out.

The physical significance of Helmholtz free energy: From the definition of entropy change, we know that

$$\Delta S = \frac{q_{rev}}{T}$$
(145)
Also, at constant pressure, we have

$$\Delta H = \Delta U + P\Delta V$$
(146)
Putting the values of ΔS and ΔH from equation (145) and (146) in equation (144), we get

$$\Delta G = (\Delta U + P\Delta V) - T \left(\frac{q_{rev}}{T}\right)_{2825820}$$
(147)

$$= (\Delta U - q_{rev}) + P\Delta V$$
(148)
Also, from the first of thermodynamics, for the work of expansion we have

$$\Delta U - q_{rev} = -w_{max}$$
(149)
Now, after putting the value of equation (149) in equation (148), we get

$$\Delta G = -w_{max} + P\Delta V \tag{150}$$

$$-\Delta G = w_{max} - P\Delta V \tag{151}$$

Hence, the decrease in Gibbs free energy for the process occurring at constant pressure and constant temperature is equal to the "maximum net work" that can be obtained from the process. The term "maximum net work" refers to maximum work other than the work of expansion.

Gibbs free energy as the criteria for the spontaneity of reaction: The general expression for the enthalpy of a system is given below.

$$G = H - TS \tag{152}$$

Since H = U + PV, equation (152) takes the form

$$G = U + PV - TS \tag{153}$$

After differentiating the equation (153), we get

$$dG = dU + PdV + VdP - TdS - SdT$$
(154)

$$TdS = dU + PdV + VdP - SdT - dG$$
(155)

Also as we know that, for the spontaneity of a process

$$TdS \ge dU + PdV \tag{156}$$

Now after putting the value of TdS from equation (155) in equation (156), we get

$$dU + PdV + VdP - SdT - dG \ge dU + PdV \tag{156}$$

or

$$VdP - SdT - dG \ge 0 \tag{157}$$

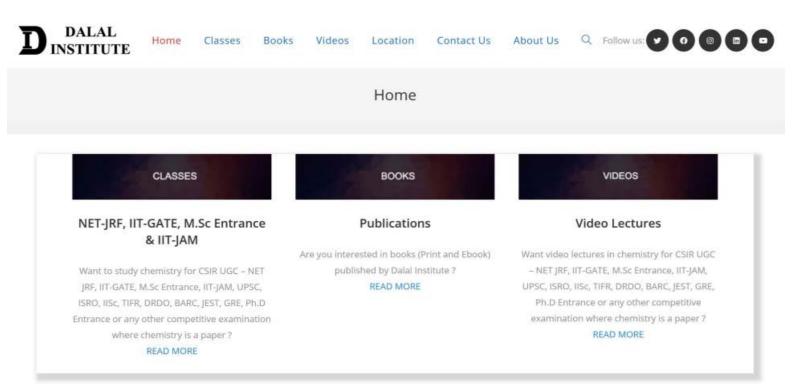
$$dG \le VdP - SdT \tag{158}$$

For a spontaneous or irreversible process, dG must be less than the sum of negative multiplication of volume and pressure change with the multiplication of entropy and temperature change.

However, the above relation is reduced to the following if the pressure and temperature of the system are kept constant i.e. dP = 0 and dT = 0.

$$(dG)_{P,T} \le 0 \tag{159}$$

Here it is worthy to recall that the sign '=' is for reversible reactions whereas '<' condition is applicable to spontaneity or irreversibility of a reaction.


LEGAL NOTICE

This document is an excerpt from the book entitled "A Textbook of Physical Chemistry – Volume 1 by Mandeep Dalal", and is the intellectual property of the Author/Publisher. The content of this document is protected by international copyright law and is valid only for the personal preview of the user who has originally downloaded it from the publisher's website (www.dalalinstitute.com). Any act of copying (including plagiarizing its language) or sharing this document will result in severe civil and criminal prosecution to the maximum extent possible under law.

This is a low resolution version only for preview purpose. If you want to read the full book, please consider buying.

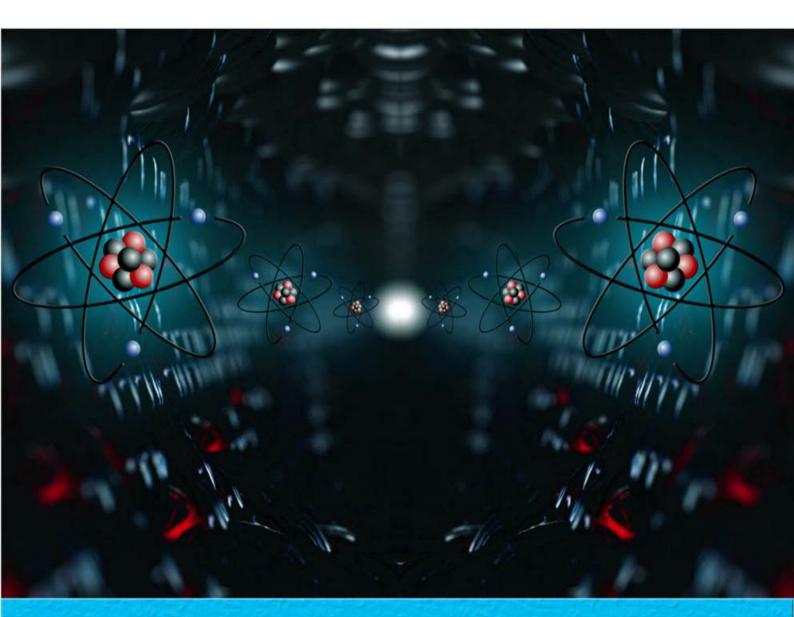
Buy the complete book with TOC navigation, high resolution images and no watermark.

Home: https://www.dalalinstitute.com/ Classes: https://www.dalalinstitute.com/classes/ Books: https://www.dalalinstitute.com/books/ Videos: https://www.dalalinstitute.com/videos/ Location: https://www.dalalinstitute.com/location/ Contact Us: https://www.dalalinstitute.com/contact-us/ About Us: https://www.dalalinstitute.com/about-us/

Postgraduate Level Classes		Undergraduate Level Classes	
(NET-JRF & IIT-GATE)		(M.Sc Entrance & IIT-JAM)	
Admission		Admission	
Regular Program Test Series	Distance Learning Result	Regular Program Test Series	Distance Learning Result

A Textbook of Physical Chemistry - Volume 1

"A Textbook of Physical Chemistry – Volume 1 by Mandeep Dalal" is now available globally; including India, America and most of the European continent. Please ask at your local bookshop or get it online here. READ MORE


Join the revolution by becoming a part of our community and get all of the member benefits like downloading any PDF document for your personal preview.

Sign Up

A TEXTBOOK OF PHYSICAL CHEMISTRY Volume I

MANDEEP DALAL

First Edition

DALAL INSTITUTE

Table of Contents

CHAP	TER 1	11
Qua	ntum Mechanics – I	11
*	Postulates of Quantum Mechanics	11
*	Derivation of Schrodinger Wave Equation	16
*	Max-Born Interpretation of Wave Functions	21
*	The Heisenberg's Uncertainty Principle	24
*	Quantum Mechanical Operators and Their Commutation Relations	29
*	Hermitian Operators – Elementary Ideas, Quantum Mechanical Operator for Linear Momentu Angular Momentum and Energy as Hermitian Operator	
*	The Average Value of the Square of Hermitian Operators	62
*	Commuting Operators and Uncertainty Principle (<i>x</i> & <i>p</i> ; <i>E</i> & <i>t</i>)	63
*	Schrodinger Wave Equation for a Particle in One Dimensional Box	
*	Evaluation of Average Position, Average Momentum and Determination of Uncertainty in Positi and Momentum and Hence Heisenberg's Uncertainty Principle	
*	Pictorial Representation of the Wave Equation of a Particle in One Dimensional Box and Influence on the Kinetic Energy of the Particle in Each Successive Quantum Level	Its
*	Lowest Energy of the Particle	80
*	Problems	82
*	Bibliography	83
CHAP'	TER 2	84
Ther	modynamics – I	84
*	Brief Resume of First and Second Law of Thermodynamics	84
*	Entropy Changes in Reversible and Irreversible Processes	87
*	Variation of Entropy with Temperature, Pressure and Volume	92
*	Entropy Concept as a Measure of Unavailable Energy and Criteria for the Spontaneity of Reacti	
*	Free Energy, Enthalpy Functions and Their Significance, Criteria for Spontaneity of a Process	98
*	Partial Molar Quantities (Free Energy, Volume, Heat Concept) 1	.04
*	Gibb's-Duhem Equation	08
*	Problems	11
*	Bibliography1	12


CHAP	CHAPTER 3	
Cher	nical Dynamics – I	113
*	Effect of Temperature on Reaction Rates	113
*	Rate Law for Opposing Reactions of Ist Order and IInd Order	119
*	Rate Law for Consecutive & Parallel Reactions of Ist Order Reactions	127
*	Collision Theory of Reaction Rates and Its Limitations	135
*	Steric Factor	141
*	Activated Complex Theory	143
*	Ionic Reactions: Single and Double Sphere Models	147
*	Influence of Solvent and Ionic Strength	152
*	The Comparison of Collision and Activated Complex Theory	157
*	Problems	158
*	Bibliography	159
CHAP'	ГЕК 4	160
Elect	rochemistry – I: Ion-Ion Interactions	160
*	The Debye-Huckel Theory of Ion-Ion Interactions	160
*	Potential and Excess Charge Density as a Function of Distance from the Central Ion	168
*	Debye-Huckel Reciprocal Length	173
*	Ionic Cloud and Its Contribution to the Total Potential	176
*	Debye-Huckel Limiting Law of Activity Coefficients and Its Limitations	178
*	Ion-Size Effect on Potential	185
*	Ion-Size Parameter and the Theoretical Mean - Activity Coefficient in the Case of Ionic C Finite-Sized Ions	
*	Debye-Huckel-Onsager Treatment for Aqueous Solutions and Its Limitations	190
*	Debye-Huckel-Onsager Theory for Non-Aqueous Solutions	195
*	The Solvent Effect on the Mobility at Infinite Dilution	196
*	Equivalent Conductivity (Λ) vs Concentration $C^{1/2}$ as a Function of the Solvent	198
*	Effect of Ion Association Upon Conductivity (Debye-Huckel-Bjerrum Equation)	200
*	Problems	209
*	Bibliography	210
CHAP'	ΓER 5	211
Qua	ntum Mechanics – II	211
*	Schrodinger Wave Equation for a Particle in a Three Dimensional Box	211

*	The Concept of Degeneracy Among Energy Levels for a Particle in Three Dimensional Box	215
*	Schrodinger Wave Equation for a Linear Harmonic Oscillator & Its Solution by Polynomial	
*	Zero Point Energy of a Particle Possessing Harmonic Motion and Its Consequence	
*	Schrodinger Wave Equation for Three Dimensional Rigid Rotator	231
*	Energy of Rigid Rotator	241
*	Space Quantization	243
*	Schrodinger Wave Equation for Hydrogen Atom: Separation of Variable in Polar Sp	
	Coordinates and Its Solution	
*	Principal, Azimuthal and Magnetic Quantum Numbers and the Magnitude of Their Values	
*	Probability Distribution Function	
*	Radial Distribution Function	278
*	Shape of Atomic Orbitals $(s, p \& d)$	281
*	Problems	287
*	Bibliography	288
CHAP	ГЕR 6	289
Ther	modynamics – II	289
*	Clausius-Clapeyron Equation	289
*	Law of Mass Action and Its Thermodynamic Derivation	293
*	Third Law of Thermodynamics (Nernst Heat Theorem, Determination of Absolute E	ntropy,
	Unattainability of Absolute Zero) And Its Limitation	296
*	Phase Diagram for Two Completely Miscible Components Systems	304
*	Eutectic Systems (Calculation of Eutectic Point)	311
*	Systems Forming Solid Compounds A _x B _y with Congruent and Incongruent Melting Points	321
*	Phase Diagram and Thermodynamic Treatment of Solid Solutions	332
*	Problems	342
*	Bibliography	343
CHAP	TER 7	344
Cher	nical Dynamics – II	344
*	Chain Reactions: Hydrogen-Bromine Reaction, Pyrolysis of Acetaldehyde, Decomposit	
*	Photochemical Reactions (Hydrogen-Bromine & Hydrogen-Chlorine Reactions)	
*	General Treatment of Chain Reactions (Ortho-Para Hydrogen Conversion and Hydrogen-B	
•	Reactions)	

*	Apparent Activation Energy of Chain Reactions	362
*	Chain Length	364
*	Rice-Herzfeld Mechanism of Organic Molecules Decomposition (Acetaldehyde)	366
*	Branching Chain Reactions and Explosions (H2-O2 Reaction)	368
*	Kinetics of (One Intermediate) Enzymatic Reaction: Michaelis-Menten Treatment	371
*	Evaluation of Michaelis's Constant for Enzyme-Substrate Binding by Lineweaver-Burk H Eadie-Hofstee Methods	
*	Competitive and Non-Competitive Inhibition	378
*	Problems	388
*	Bibliography	389
СНАР	TER 8	390
Elect	trochemistry – II: Ion Transport in Solutions	390
*	Ionic Movement Under the Influence of an Electric Field	390
*	Mobility of Ions	393
*	Ionic Drift Velocity and Its Relation with Current Density	394
*	Einstein Relation Between the Absolute Mobility and Diffusion Coefficient	398
*	The Stokes-Einstein Relation	401
*	The Nernst-Einstein Equation	403
*	Walden's Rule	404
*	The Rate-Process Approach to Ionic Migration	406
*	The Rate-Process Equation for Equivalent Conductivity	410
*	Total Driving Force for Ionic Transport: Nernst-Planck Flux Equation	412
*	Ionic Drift and Diffusion Potential	416
*	The Onsager Phenomenological Equations	418
*	The Basic Equation for the Diffusion	419
*	Planck-Henderson Equation for the Diffusion Potential	422
*	Problems	425
*	Bibliography	426
INDEX	ζ	427

Mandeep Dalal (M.Sc, Ph.D, CSIR UGC - NET JRF, IIT - GATE) Founder & Director, Dalal Institute Contact No: +91-9802825820 Homepage: www.mandeepdalal.com E-Mail: dr.mandeep.dalal@gmail.com Mandeep Dalal is an Indian research scholar who is primarily working in the field of Science and Philosophy. He received his Ph.D in Chemistry from Maharshi Dayanand University, Rohtak, in 2018. He is also the Founder and Director of "Dalal Institute", an India-based educational organization which is trying to revolutionize the mode of higher education in Chemistry across the globe. He has published more than 40 research papers in various international scientific journals, including mostly from Elsevier (USA), IOP (UK) and Springer (Netherlands).

Main Market, Sector-14, Rohtak, Haryana-124001 (+91-9802825820, info@dalalinstitute.com) www.dalalinstitute.com