❖ Ionic Reactions: Single and Double Sphere Models

It is a quite well-known fact that the rate of ionic reactions is generally small, which is obviously due to the larger magnitude of activation energies arising from the very strong nature of electrostatic interactions. The magnitude of the frequency factor in ionic reactions is a function of ionic charges. The frequency factors have larger values if the charges on the participating ions are opposite, while smaller values are obtained in the case of like-charged ions. This behavior can be explained in terms of the kinetic theory of gases; which suggests that oppositely charged ions are more prone to collision due to attraction than the ions colliding with same charges (repulsive forces). Besides the collision theory, the activated complex theory also provides an alternate explanation for the ionic reactions. In this section, we will discuss the rationalization of ionic reactions on the basis of the single-sphere model and the double-sphere model in detail.

> Double Sphere Model

Before we discuss the double sphere model of the ionic reactions, a simplified surrounding must be assumed. Although it would be an oversimplification of the actual situation, it is highly beneficial as far as conceptual and quantitative understanding is concerned. To do so, the solvent is considered as continuous surrounding with a ε as the dielectric constant.

According to this model, two ions, which can same or opposite charges, combine together to form an activated complex. In the initial state, the ions are considered as discrete; while in the final state, they assumed to form a dumbbell like coordination with r as the distance of separation between their centers.

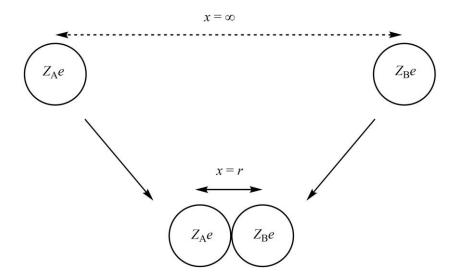


Figure 12. The pictorial depiction of the double-sphere model of ionic reactions.

Now, if Z_A and Z_B are the charge numbers of the participating ions and x as the distance of separation, the force of electrostatic interaction (F_{AB}) between them can be given from the Coulomb's law as:

$$F_{AB} = \frac{Z_A Z_B e^2}{4\pi \varepsilon_0 \varepsilon x^2} \tag{206}$$

Where ε_0 and ε are permittivities of the vacuum (8.854 × 10⁻¹² C^2 N⁻¹ m⁻²) and the dielectric constant of the solvent used, respectively. The symbol e represents the elementary charge and has a value equal to 1.6×10^{-19} C. The value of parameter varies from ∞ to r with the mutual approach of two ions. The amount of work done in moving the two ions closer by an extant dx will be

$$work = force \times displacement$$
 (207)

$$dw = F_{AB} \times dx \tag{208}$$

$$dw = -\frac{Z_A Z_B e^2}{4\pi\varepsilon_0 \varepsilon x^2} dx \tag{209}$$

The negative sign is an indicator of decreasing separation i.e. distance is reduced by dx. The total amount of work done in moving the two ions from $x = \infty$ to x = r will be

$$w = \int_{-\infty}^{r} \frac{Z_A Z_B e^2}{4\pi \varepsilon_0 \varepsilon x^2} dx \tag{210}$$

$$\begin{array}{cccc}
& & & & & & \\
\hline
\text{Constitute} & & & \\$$

The work given the above equation is actually the potential energy of the system which would have a negative sign for oppositely charged ions and positive sign if the ions have same charges. Furthermore, we can also say that this work is the free energy change due to electrostatic interactions, therefore, multiplying it by Avogadro number (N) would give the value of the corresponding molar free energy change (ΔG_{EI}^*) i.e.

$$\Delta G_{EI}^* = \frac{N Z_A Z_B e^2}{4\pi \varepsilon_0 \varepsilon r} \tag{212}$$

Correcting the above equation for non-electrostatic contribution ΔG_{NEI}^* , the total molar free energy change for the whole process can be given by the following relation.

$$\Delta G^* = \Delta G_{NEI}^* + \Delta G_{EI}^* = \Delta G_{NEI}^* + \frac{N Z_A Z_B e^2}{4\pi \varepsilon_0 \varepsilon r}$$
(213)

Also, from the activated complex theory, we know that

$$k = \frac{RT}{Nh}e^{-\frac{\Delta G^*}{RT}} \tag{214}$$

After putting the value of ΔG^* from equation (213) into equation (214), we get

$$k = \frac{RT}{Nh} e^{-\left(\frac{\Delta G_{NEI}^*}{RT} + \frac{NZ_A Z_B e^2}{RT4\pi\varepsilon_0 \varepsilon r}\right)}$$
 (215)

$$k = \frac{RT}{Nh}e^{-\frac{\Delta G_{NEI}^*}{RT}} \cdot e^{-\frac{NZ_AZ_Be^2}{RT4\pi\varepsilon_0\varepsilon r}}$$
(216)

Taking natural logarithm both side of equation (216), we get

$$\ln k = \ln \frac{RT}{Nh} + \ln e^{-\frac{\Delta G_{NEI}^*}{RT}} + \ln e^{-\frac{NZ_A Z_B e^2}{RT \cdot 4\pi\varepsilon_0 \varepsilon r}}$$
(217)

or

$$\ln k = \ln \frac{RT}{Nh} - \frac{\Delta G_{NEI}^*}{RT} - \frac{NZ_A Z_B e^2}{RT 4\pi \varepsilon_0 \varepsilon r}$$
(218)

Which can also be expressed as

$$\ln k = \ln k_0 - \frac{NZ_A Z_B e^2}{RT 4\pi \varepsilon_0 \varepsilon r}$$
(219)

Where k_0 represents the magnitude of the rate constant for the ionic reaction carried out in a solvent of infinite dielectric constant so that the electrostatic interactions become zero.

Single Sphere Model fo@dalalinstitute.com, +91-9802825820)

Besides the double-sphere model, another theoretical model that is quite rationalizing is a single-sphere model. Just like the double-sphere model, the solvent is also considered as a continuum with a ϵ as the dielectric constant. However, the primary differentiating aspect of this model is that it considers the two ions, which can same or opposite charges, to form a single-sphere activated complex.

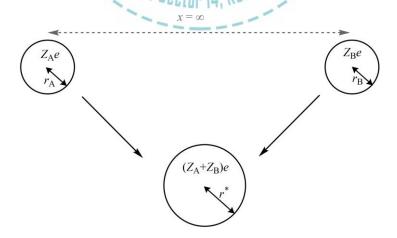


Figure 12. The pictorial depiction of the single-sphere model of ionic reactions.

In the initial state, the ions are considered as discrete; while in the final state, they assumed to form a single-sphere activated complex with ' r^* ' as the overall radius. The rate law for this case was derived by Born by considering the energy required to charge an ion in solution. Now suppose that we need to charge a conducting sphere of radius r from an initial value of zero to the final value Ze. This can be visualized as a process in which a very small charge is $e.d\lambda$ ($\lambda = 0 - Z$) is carried from infinite to this sphere.

Now, if Z_A and Z_B are the charge numbers of the participating ions and x as the distance of separation between the sphere and the "increment" at any time, the force of electrostatic interaction (dF) between them can be given from the Coulomb's law as:

$$dF = \frac{\lambda e^2 d\lambda}{4\pi\varepsilon_0 \varepsilon x^2} \tag{220}$$

Where ε_0 and ε are permittivities of the vacuum (8.854 × 10⁻¹² C^2 N⁻¹ m⁻²) and the dielectric constant of the solvent used, respectively. The symbol e represents the elementary charge and has a value equal to 1.6×10^{-19} C. The amount of work done in moving the "increment" closer by an extant dx will be

$$dw = dF \times dx \tag{221}$$

$$dw = \frac{\lambda e^2 d\lambda}{4\pi s \cdot s x^2} dx \tag{222}$$

The total amount of work done can be obtained by carrying out the double integration with respect to $x = \infty - r$ and $\lambda = 0 - Z$ i.e.

$$w = \frac{e^2}{4\pi\varepsilon_0\varepsilon} \int_0^Z \int_0^r \frac{\lambda}{x^2} d\lambda \, dx \tag{223}$$

$$w = \frac{Z^2 e^2}{8\pi \varepsilon_0 \varepsilon r}$$
 (224)

The work given the above equation is actually the contribution of the electrostatic interactions to the Gibbs energy of the ion i.e.

$$G_{EI} = \frac{Z^2 e^2}{8\pi \varepsilon_0 \varepsilon r} \tag{225}$$

In the light of the above correlation, the electrostatic contribution to the Gibbs free energy of discrete ions and activated complex can be written as

$$G_{EI}(A) = \frac{Z_A^2 e^2}{8\pi\varepsilon_0 \varepsilon \, r_A} \tag{225}$$

$$G_{EI}(B) = \frac{Z_B^2 e^2}{8\pi\varepsilon_0 \varepsilon \, r_B} \tag{226}$$

$$G_{EI}^* = \frac{(Z_B + Z_B)^2 e^2}{8\pi \varepsilon_0 \varepsilon \, r^*} \tag{227}$$

Hence, the change in electrostatic contribution can be obtained simply by subtracting the sum of individual contributions from the overall contribution i.e.

$$\Delta G_{EI}^* = \frac{(Z_B + Z_B)^2 e^2}{8\pi\varepsilon_0 \varepsilon r^*} - \frac{Z_A^2 e^2}{8\pi\varepsilon_0 \varepsilon r_A} - \frac{Z_B^2 e^2}{8\pi\varepsilon_0 \varepsilon r_B}$$
(228)

or

$$\Delta G_{EI}^* = \frac{e^2}{8\pi\varepsilon_0\varepsilon} \left[\frac{(Z_B + Z_B)^2}{r^*} - \frac{Z_A^2}{r_A} - \frac{Z_B^2}{r_B} \right]$$
(229)

Correcting the above equation for non-electrostatic contribution ΔG_{NEI}^* , the total molar free energy change for the whole process can be given by the following relation.

$$\Delta G^* = \Delta G_{NEI}^* + \Delta G_{EI}^* = \Delta G_{NEI}^* + \frac{Ne^2}{8\pi\varepsilon_0\varepsilon} \left[\frac{(Z_B + Z_B)^2}{r^*} - \frac{Z_A^2}{r_A} - \frac{Z_B^2}{r_B} \right]$$
(230)

Also, from the activated complex theory, we know that m, +91-9802825820)

www.dalalinstitute.com
$$k = \frac{RT}{Nh} e^{\frac{AG^*}{RT}}$$
(231)

After putting the value of ΔG^* from equation (230) into equation (231), we get

$$k = \frac{RT}{Nh} e^{-\left(\frac{\Delta G_{NEI}^*}{RT} + \frac{Ne^2}{RT8\pi\varepsilon_0\varepsilon} \left[\frac{(Z_B + Z_B)^2}{r^*} - \frac{Z_A^2}{r_A} - \frac{Z_B^2}{r_B}\right]\right)}$$
(232)

Taking natural logarithm both side of equation (232) and rearranging, we get

$$\ln k = \ln \frac{RT}{Nh} - \frac{\Delta G_{NEI}^*}{RT} - \frac{Ne^2}{RT8\pi\varepsilon_0\varepsilon} \left[\frac{(Z_B + Z_B)^2}{r^*} - \frac{Z_A^2}{r_A} - \frac{Z_B^2}{r_B} \right]$$
(233)

Which can also be expressed as

$$\ln k = \ln k_0 - \frac{Ne^2}{RT8\pi\varepsilon_0\varepsilon} \left[\frac{(Z_B + Z_B)^2}{r^*} - \frac{Z_A^2}{r_A} - \frac{Z_B^2}{r_B} \right]$$
(234)

Where k_0 represents the magnitude of the rate constant for the ionic reaction carried out in a solvent of infinite dielectric constant so that the electrostatic interactions become zero.

LEGAL NOTICE

This document is an excerpt from the book entitled "A Textbook of Physical Chemistry – Volume 1 by Mandeep Dalal", and is the intellectual property of the Author/Publisher. The content of this document is protected by international copyright law and is valid only for the personal preview of the user who has originally downloaded it from the publisher's website (www.dalalinstitute.com). Any act of copying (including plagiarizing its language) or sharing this document will result in severe civil and criminal prosecution to the maximum extent possible under law.

This is a low resolution version only for preview purpose. If you want to read the full book, please consider buying.

Buy the complete book with TOC navigation, high resolution images and no watermark.

Home

Classes

Books

Videos

Location

Contact Us

Home

CLASSES

NET-JRF, IIT-GATE, M.Sc Entrance & IIT-JAM

Want to study chemistry for CSIR UGC – NET JRF, IIT-GATE, M.Sc Entrance, IIT-JAM, UPSC, ISRO, IISC, TIFR, DRDO, BARC, JEST, GRE, Ph.D Entrance or any other competitive examination where chemistry is a paper?

READ MORE

воокѕ

Publications

Are you interested in books (Print and Ebook)
published by Dalal Institute?

READ MORE

Video Lectures

VIDEOS

Want video lectures in chemistry for CSIR UGC

- NET JRF, IIT-GATE, M.Sc Entrance, IIT-JAM,
UPSC, ISRO, IISc, TIFR, DRDO, BARC, JEST, GRE,
Ph.D Entrance or any other competitive
examination where chemistry is a paper 7
READ MORE

Home: https://www.dalalinstitute.com/
Classes: https://www.dalalinstitute.com/classes/
Books: https://www.dalalinstitute.com/books/
Videos: https://www.dalalinstitute.com/videos/
Location: https://www.dalalinstitute.com/location/
Contact Us: https://www.dalalinstitute.com/contact-us/
About Us: https://www.dalalinstitute.com/about-us/

Postgraduate Level Classes (NET-JRF & IIT-GATE)

Admission

Regular Program Distance Learning

Test Series Result

Undergraduate Level Classes (M.Sc Entrance & IIT-JAM)

Admission

Regular Program Distance Learning

Test Series Result

A Textbook of Physical Chemistry - Volume 1

"A Textbook of Physical Chemistry – Volume 1 by Mandeep Dalal" is now available globally; including India, America and most of the European continent. Please ask at your local bookshop or get it online here.

READ MORE

Join the revolution by becoming a part of our community and get all of the member benefits like downloading any PDF document for your personal preview.

Sign Up

International Edition

A TEXTBOOK OF PHYSICAL CHEMISTRY Volume I

MANDEEP DALAL

First Edition

DALAL INSTITUTE

Table of Contents

CHAP'	TER 1	11
Quai	ntum Mechanics – I	11
*	Postulates of Quantum Mechanics	11
*	Derivation of Schrodinger Wave Equation	16
*	Max-Born Interpretation of Wave Functions	21
*	The Heisenberg's Uncertainty Principle	24
*	Quantum Mechanical Operators and Their Commutation Relations	29
*	Hermitian Operators – Elementary Ideas, Quantum Mechanical Operator for Linear Mon Angular Momentum and Energy as Hermitian Operator	
*	The Average Value of the Square of Hermitian Operators	62
*	Commuting Operators and Uncertainty Principle (x & p; E & t)	63
*	Schrodinger Wave Equation for a Particle in One Dimensional Box	
*	Evaluation of Average Position, Average Momentum and Determination of Uncertainty in and Momentum and Hence Heisenberg's Uncertainty Principle	Position
*	Pictorial Representation of the Wave Equation of a Particle in One Dimensional Box Influence on the Kinetic Energy of the Particle in Each Successive Quantum Level	and Its
*	Lowest Energy of the Particle	
	Problems Problems	
*	Bibliography	83
CHAP'	TER 2	84
Ther	modynamics – I	84
*	Brief Resume of First and Second Law of Thermodynamics	84
*	Entropy Changes in Reversible and Irreversible Processes	87
*	Variation of Entropy with Temperature, Pressure and Volume	92
*	Entropy Concept as a Measure of Unavailable Energy and Criteria for the Spontaneity of R	
*	Free Energy, Enthalpy Functions and Their Significance, Criteria for Spontaneity of a Proce	ess 98
*	Partial Molar Quantities (Free Energy, Volume, Heat Concept)	104
*	Gibb's-Duhem Equation	108
*	Problems	111
*	Bibliography	112

CHAP	ΓER 3	. 113
Chen	nical Dynamics – I	. 113
*	Effect of Temperature on Reaction Rates	113
*	Rate Law for Opposing Reactions of Ist Order and IInd Order	119
*	Rate Law for Consecutive & Parallel Reactions of Ist Order Reactions	127
*	Collision Theory of Reaction Rates and Its Limitations	135
*	Steric Factor.	. 141
*	Activated Complex Theory	. 143
*	Ionic Reactions: Single and Double Sphere Models	147
*	Influence of Solvent and Ionic Strength	152
*	The Comparison of Collision and Activated Complex Theory	157
*	Problems	. 158
*	Bibliography	. 159
CHAP	ΓER 4	. 160
Elect	rochemistry – I: Ion-Ion Interactions	. 160
*	The Debye-Huckel Theory of Ion-Ion Interactions	160
*	Potential and Excess Charge Density as a Function of Distance from the Central Ion	168
*	Debye-Huckel Reciprocal Length	173
*	Ionic Cloud and Its Contribution to the Total Potential	176
*	Debye-Huckel Limiting Law of Activity Coefficients and Its Limitations	178
*	Ion-Size Effect on Potential	185
*	Ion-Size Parameter and the Theoretical Mean - Activity Coefficient in the Case of Ionic Clouds Finite-Sized Ions	
*	Debye-Huckel-Onsager Treatment for Aqueous Solutions and Its Limitations	190
*	Debye-Huckel-Onsager Theory for Non-Aqueous Solutions	
*	The Solvent Effect on the Mobility at Infinite Dilution	
*	Equivalent Conductivity (Λ) vs Concentration $C^{1/2}$ as a Function of the Solvent	198
*	Effect of Ion Association Upon Conductivity (Debye-Huckel-Bjerrum Equation)	200
*	Problems	. 209
*	Bibliography	210
CHAP	ΓER 5	. 211
Quar	ntum Mechanics – II	211
*	Schrodinger Wave Equation for a Particle in a Three Dimensional Box	211

*	The Concept of Degeneracy Among Energy Levels for a Particle in Three Dimensional Box	215
*	Schrodinger Wave Equation for a Linear Harmonic Oscillator & Its Solution by Polynomial	Method
*	Zero Point Energy of a Particle Possessing Harmonic Motion and Its Consequence	
*	Schrodinger Wave Equation for Three Dimensional Rigid Rotator	
*	Energy of Rigid Rotator	
*	Space Quantization	
*	Schrodinger Wave Equation for Hydrogen Atom: Separation of Variable in Polar Sp Coordinates and Its Solution	
*	Principal, Azimuthal and Magnetic Quantum Numbers and the Magnitude of Their Values	268
*	Probability Distribution Function	276
*	Radial Distribution Function	278
*	Shape of Atomic Orbitals (s, p & d)	281
*	Problems	287
*	Bibliography	288
CHAP'	TER 6	289
Ther	modynamics – II	289
*	Clausius-Clapeyron Equation	289
*	Law of Mass Action and Its Thermodynamic Derivation	293
*	Third Law of Thermodynamics (Nernst Heat Theorem, Determination of Absolute E	ntropy,
	Unattainability of Absolute Zero) And Its Limitation	296
*	Phase Diagram for Two Completely Miscible Components Systems	304
*	Eutectic Systems (Calculation of Eutectic Point)	311
*	Systems Forming Solid Compounds A_xB_y with Congruent and Incongruent Melting Points	321
*	Phase Diagram and Thermodynamic Treatment of Solid Solutions	332
*	Problems	342
*	Bibliography	343
CHAP'	TER 7	344
Cher	nical Dynamics – II	344
*	Chain Reactions: Hydrogen-Bromine Reaction, Pyrolysis of Acetaldehyde, Decomposi	tion of
•	Ethane	
*	Photochemical Reactions (Hydrogen-Bromine & Hydrogen-Chlorine Reactions)	
*	General Treatment of Chain Reactions (Ortho-Para Hydrogen Conversion and Hydrogen-B	Bromine
	Reactions)	358

*	Apparent Activation Energy of Chain Reactions	362
*	Chain Length	364
*	Rice-Herzfeld Mechanism of Organic Molecules Decomposition (Acetaldehyde)	366
*	Branching Chain Reactions and Explosions (H ₂ -O ₂ Reaction)	368
*	Kinetics of (One Intermediate) Enzymatic Reaction: Michaelis-Menten Treatment	371
*	Evaluation of Michaelis's Constant for Enzyme-Substrate Binding by Lineweaver-Burk Plo Eadie-Hofstee Methods	
*	Competitive and Non-Competitive Inhibition	378
*	Problems	388
*	Bibliography	389
CHAPT	TER 8	390
Elect	rochemistry – II: Ion Transport in Solutions	390
*	Ionic Movement Under the Influence of an Electric Field	390
*	Mobility of Ions	393
*	Ionic Drift Velocity and Its Relation with Current Density	394
*	Einstein Relation Between the Absolute Mobility and Diffusion Coefficient	398
*	The Stokes-Einstein Relation	401
*	The Nernst-Einstein Equation	403
*	Walden's Rule	404
*	The Rate-Process Approach to Ionic Migration	406
*	The Rate-Process Equation for Equivalent Conductivity	410
*	Total Driving Force for Ionic Transport: Nernst-Planck Flux Equation	412
*	Ionic Drift and Diffusion Potential	416
*	The Onsager Phenomenological Equations	418
*	The Basic Equation for the Diffusion	419
*	Planck-Henderson Equation for the Diffusion Potential	422
*	Problems	425
*	Bibliography	426
INDEX		427

Mandeep Dalal
(M.Sc, Ph.D, CSIR UGC - NET JRF, IIT - GATE)
Founder & Director, Dalal Institute
Contact No: +91-9802825820
Homepage: www.mandeepdalal.com
E-Mail: dr.mandeep.dalal@gmail.com

Mandeep Dalal is an Indian research scholar who is primarily working in the field of Science and Philosophy. He received his Ph.D in Chemistry from Maharshi Dayanand University, Rohtak, in 2018. He is also the Founder and Director of "Dalal Institute", an India-based educational organization which is trying to revolutionize the mode of higher education in Chemistry across the globe. He has published more than 40 research papers in various international scientific journals, including mostly from Elsevier (USA), IDP (UK) and Springer (Netherlands).

Other Books by the Author

A TEXTBOOK OF INORGANIC CHEMISTRY - VOLUME I, II, III, IV
A TEXTBOOK OF PHYSICAL CHEMISTRY - VOLUME I, II, III, IV
A TEXTBOOK OF ORGANIC CHEMISTRY - VOLUME I, II, III, IV

D DALAL INSTITUTE

Main Market, Sector-14, Rohtak, Haryana-124001 (+91-9802825820, info@dalalinstitute.com) www.dalalinstitute.com