
CHAPTER 8

Electrochemistry – II: Ion Transport in Solutions

❖ Ionic Movement Under the Influence of an Electric Field

In order to imagine the conduction process in electrolytic solutions at the atomic level, we can follow two approaches which are somewhat different in their initial assumptions.

The first approach includes the visualization of ionic movements governed by the diffusion phenomenon first and then studying the perturbation of this ionic movement by an externally applied electric field. Since it is a well-known fact that the diffusion of ions is simply the movement of ions from a high-numbered region to a low-numbered region. In other words, we can say the ionic diffusion is the result of a concentration-gradient in which a particular type of ions travel from a high concentration region towards a low concentration region until a homogeneity in the concentration is reached. Now, although the net movement of ions stops after the loss of concentration gradient, the individual ionic movement still happens but with zero mean displacements. In other words, we can say that in a homogeneous ionic solution, the ions can move randomly in any direction resulting in a zero net diffusion.

Diffusion of cations

Figure 1. The movement of positive ions from higher concentration to lower concentration.

Now since the ions are charged particles, the movements of these ions are strongly affected when an electric field is applied. From the laws electrostatic interactions, we can conclude that the cations will prefer to move towards the negative electrode whereas the anions will prefer to move towards the positive electrode. More specifically, the application of an electric field makes the ions to adopt a single direction in space, which is a direction along or opposite to the direction of the applied field. Therefore, the ions drift under the applied field and stop their random walk.

The second approach to study the phenomenon of electrolytic conduction at the atomic level includes the framing of the drift of only one ion under the externally applied field. The electric field would make the ion to accelerate as per Newton's second law. Now if the ion is in the vacuum, it would show an acceleration until it strikes with the respective electrode. However, it will not happen since a large number of other ions also present in the same electrolytic solution along with the solvent as well. Consequently, the ion is almost bound to collide with other ions or solvent particles in its journey. The ion will stop for some time and then will start to accelerate again. This stop-start phenomenon will impart a discontinuity in the speed and direction of this moving ion. It means that ionic movement is not very much smooth but actually a resistance is offered by the surrounding medium. Therefore, we can say that the application of an external electric field will make the ion move towards the oppositely charged electrode but in a stops-starts and zigzag fashion.

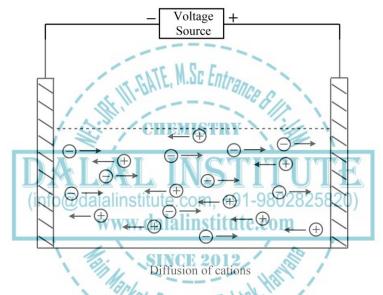


Figure 2. The general depiction movement of ions under the influence of the external electric field.

Since an ion starts moving towards the positively charged electrode only after the application of the electric field; the initial velocity before that can simply be neglected because it arises from random collisions, which can be in any random direction. However, after applying the electric field, the ion feels a force that makes it move in the same direction, i.e., the direction of the electrostatic force. In other words, the electric field will create an additional velocity component on the ion under consideration that drifts the ion to the oppositely charged electrode. Now, let \vec{F} be the force vector that imparts a drift velocity v_d ; and then using Newton's second law of motion states that this force divided by the particle's mass is simply equal to the acceleration. From the general expressions for acceleration, we have

$$a = \frac{dv}{dt} \tag{1}$$

And

$$a = \frac{\vec{F}}{m} \tag{2}$$

From equation (1) and equation (2), we have

$$\frac{\vec{F}}{m} = \frac{dv}{dt} \tag{3}$$

Now although the time between two collisions may vary significantly, we can use a mean time τ for simplicity which can be formulated as (if N collisions take place in 't' time) given below.

$$\tau = \frac{t}{N} \tag{4}$$

Now because the drift velocity is imparted to the ion by the external force, its value must be equal to the product of meantime and the acceleration due to force, i.e.,

$$v_d = \frac{dv}{dt}\tau\tag{5}$$

Using the value of dv/dt from equation (3) in equation (5), we get

$$\begin{array}{c|c}
\hline
\text{(info@dalalinstitute.com, +91-9802825820)}
\end{array}$$
(6)

It is obvious from the above relation that the meantime is related to the drift velocity showing that the jumps between collisions affect ionic movement. Besides, it is also clear that the drift velocity is directly proportional to the driving force of the applied electric field. The ionic flux can be formulated in terms of drift velocity as given below.

$$Flux = Ionic\ cencentration \times Drift\ velocity \tag{7}$$

Hence, since the drift velocity is directly proportional to the electric force simulating conduction, the flux must also be proportional to the magnitude of the electric field, i.e.,

$$Flux \propto Electric field$$
 (8)

The nature of equation (6) also unveils the situation where the flux or the drift velocity no longer holds the direct proportionality with the applied electric field. For equation (6), it is very important to assume that during the collision, the velocity component imparted to the ion by applied electric field vanishes completely and the ion starts as a full-fresher each time. If this is not satisfied, these leftover velocity components would add up after every collision and the real velocity, in that case, would be much greater than the calculation given by equation (6). In other words, equation (6) will no longer be valid. Therefore, we can conclude that for a reasonable guess for drift velocity, the magnitude of the applied electric field must be very small.

LEGAL NOTICE

This document is an excerpt from the book entitled "A Textbook of Physical Chemistry – Volume 1 by Mandeep Dalal", and is the intellectual property of the Author/Publisher. The content of this document is protected by international copyright law and is valid only for the personal preview of the user who has originally downloaded it from the publisher's website (www.dalalinstitute.com). Any act of copying (including plagiarizing its language) or sharing this document will result in severe civil and criminal prosecution to the maximum extent possible under law.

This is a low resolution version only for preview purpose. If you want to read the full book, please consider buying.

Buy the complete book with TOC navigation, high resolution images and no watermark.

Home

Classes

Books

Videos

Location

Contact Us

Home

CLASSES

NET-JRF, IIT-GATE, M.Sc Entrance & IIT-JAM

Want to study chemistry for CSIR UGC – NET JRF, IIT-GATE, M.Sc Entrance, IIT-JAM, UPSC, ISRO, IISC, TIFR, DRDO, BARC, JEST, GRE, Ph.D Entrance or any other competitive examination where chemistry is a paper?

READ MORE

воокѕ

Publications

Are you interested in books (Print and Ebook)
published by Dalal Institute?

READ MORE

Video Lectures

VIDEOS

Want video lectures in chemistry for CSIR UGC

- NET JRF, IIT-GATE, M.Sc Entrance, IIT-JAM,
UPSC, ISRO, IISc, TIFR, DRDO, BARC, JEST, GRE,
Ph.D Entrance or any other competitive
examination where chemistry is a paper 7
READ MORE

Home: https://www.dalalinstitute.com/
Classes: https://www.dalalinstitute.com/classes/
Books: https://www.dalalinstitute.com/books/
Videos: https://www.dalalinstitute.com/videos/
Location: https://www.dalalinstitute.com/location/
Contact Us: https://www.dalalinstitute.com/contact-us/
About Us: https://www.dalalinstitute.com/about-us/

Postgraduate Level Classes (NET-JRF & IIT-GATE)

Admission

Regular Program Distance Learning

Test Series Result

Undergraduate Level Classes (M.Sc Entrance & IIT-JAM)

Admission

Regular Program Distance Learning

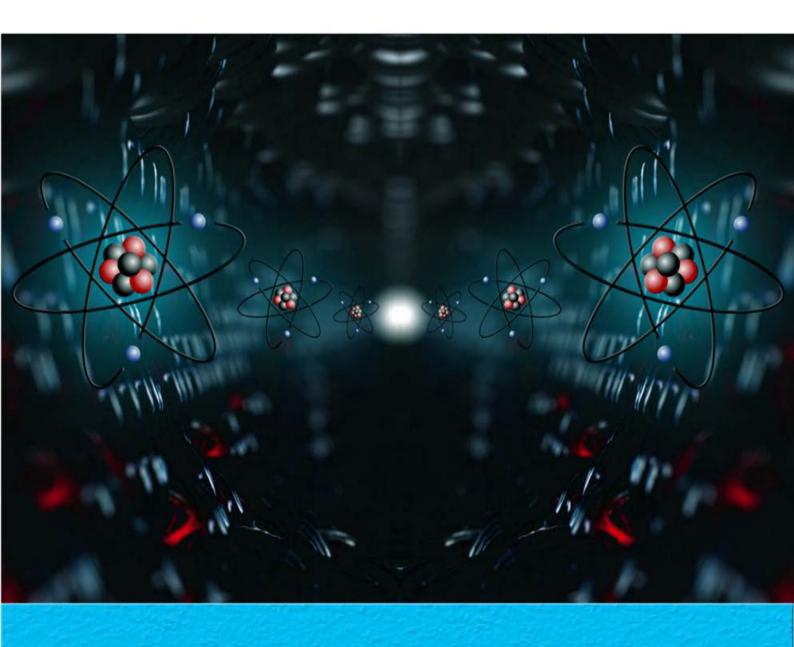
Test Series Result

A Textbook of Physical Chemistry - Volume 1

"A Textbook of Physical Chemistry – Volume 1 by Mandeep Dalal" is now available globally; including India, America and most of the European continent. Please ask at your local bookshop or get it online here.

READ MORE

Join the revolution by becoming a part of our community and get all of the member benefits like downloading any PDF document for your personal preview.


Sign Up

International Edition

A TEXTBOOK OF PHYSICAL CHEMISTRY Volume I

MANDEEP DALAL

First Edition

DALAL INSTITUTE

Table of Contents

CHAP'	TER 1	11
Quai	ntum Mechanics – I	11
*	Postulates of Quantum Mechanics	11
*	Derivation of Schrodinger Wave Equation	16
*	Max-Born Interpretation of Wave Functions	21
*	The Heisenberg's Uncertainty Principle	24
*	Quantum Mechanical Operators and Their Commutation Relations	29
*	Hermitian Operators – Elementary Ideas, Quantum Mechanical Operator for Linear Mon Angular Momentum and Energy as Hermitian Operator	
*	The Average Value of the Square of Hermitian Operators	62
*	Commuting Operators and Uncertainty Principle (x & p; E & t)	63
*	Schrodinger Wave Equation for a Particle in One Dimensional Box	
*	Evaluation of Average Position, Average Momentum and Determination of Uncertainty in and Momentum and Hence Heisenberg's Uncertainty Principle	Position
*	Pictorial Representation of the Wave Equation of a Particle in One Dimensional Box Influence on the Kinetic Energy of the Particle in Each Successive Quantum Level	and Its
*	Lowest Energy of the Particle	
	Problems Problems	
*	Bibliography	83
CHAP'	TER 2	84
Ther	modynamics – I	84
*	Brief Resume of First and Second Law of Thermodynamics	84
*	Entropy Changes in Reversible and Irreversible Processes	87
*	Variation of Entropy with Temperature, Pressure and Volume	92
*	Entropy Concept as a Measure of Unavailable Energy and Criteria for the Spontaneity of R	
*	Free Energy, Enthalpy Functions and Their Significance, Criteria for Spontaneity of a Proce	ess 98
*	Partial Molar Quantities (Free Energy, Volume, Heat Concept)	104
*	Gibb's-Duhem Equation	108
*	Problems	111
*	Bibliography	112

CHAP	ΓER 3	. 113
Chen	nical Dynamics – I	. 113
*	Effect of Temperature on Reaction Rates	113
*	Rate Law for Opposing Reactions of Ist Order and IInd Order	119
*	Rate Law for Consecutive & Parallel Reactions of Ist Order Reactions	127
*	Collision Theory of Reaction Rates and Its Limitations	135
*	Steric Factor.	. 141
*	Activated Complex Theory	. 143
*	Ionic Reactions: Single and Double Sphere Models	147
*	Influence of Solvent and Ionic Strength	152
*	The Comparison of Collision and Activated Complex Theory	157
*	Problems	. 158
*	Bibliography	. 159
CHAP	ΓER 4	. 160
Elect	rochemistry – I: Ion-Ion Interactions	. 160
*	The Debye-Huckel Theory of Ion-Ion Interactions	160
*	Potential and Excess Charge Density as a Function of Distance from the Central Ion	168
*	Debye-Huckel Reciprocal Length	173
*	Ionic Cloud and Its Contribution to the Total Potential	176
*	Debye-Huckel Limiting Law of Activity Coefficients and Its Limitations	178
*	Ion-Size Effect on Potential	185
*	Ion-Size Parameter and the Theoretical Mean - Activity Coefficient in the Case of Ionic Clouds Finite-Sized Ions	
*	Debye-Huckel-Onsager Treatment for Aqueous Solutions and Its Limitations	190
*	Debye-Huckel-Onsager Theory for Non-Aqueous Solutions	
*	The Solvent Effect on the Mobility at Infinite Dilution	
*	Equivalent Conductivity (Λ) vs Concentration $C^{1/2}$ as a Function of the Solvent	198
*	Effect of Ion Association Upon Conductivity (Debye-Huckel-Bjerrum Equation)	200
*	Problems	. 209
*	Bibliography	210
CHAP	ΓER 5	. 211
Quar	ntum Mechanics – II	211
*	Schrodinger Wave Equation for a Particle in a Three Dimensional Box	211

*	The Concept of Degeneracy Among Energy Levels for a Particle in Three Dimensional Box	215
*	Schrodinger Wave Equation for a Linear Harmonic Oscillator & Its Solution by Polynomial	Method
*	Zero Point Energy of a Particle Possessing Harmonic Motion and Its Consequence	
*	Schrodinger Wave Equation for Three Dimensional Rigid Rotator	
*	Energy of Rigid Rotator	
*	Space Quantization	
*	Schrodinger Wave Equation for Hydrogen Atom: Separation of Variable in Polar Sp Coordinates and Its Solution	
*	Principal, Azimuthal and Magnetic Quantum Numbers and the Magnitude of Their Values	268
*	Probability Distribution Function	276
*	Radial Distribution Function	278
*	Shape of Atomic Orbitals (s, p & d)	281
*	Problems	287
*	Bibliography	288
CHAP'	TER 6	289
Ther	modynamics – II	289
*	Clausius-Clapeyron Equation	289
*	Law of Mass Action and Its Thermodynamic Derivation	293
*	Third Law of Thermodynamics (Nernst Heat Theorem, Determination of Absolute E	ntropy,
	Unattainability of Absolute Zero) And Its Limitation	296
*	Phase Diagram for Two Completely Miscible Components Systems	304
*	Eutectic Systems (Calculation of Eutectic Point)	311
*	Systems Forming Solid Compounds A_xB_y with Congruent and Incongruent Melting Points	321
*	Phase Diagram and Thermodynamic Treatment of Solid Solutions	332
*	Problems	342
*	Bibliography	343
CHAP'	TER 7	344
Cher	nical Dynamics – II	344
*	Chain Reactions: Hydrogen-Bromine Reaction, Pyrolysis of Acetaldehyde, Decomposi	tion of
•	Ethane	
*	Photochemical Reactions (Hydrogen-Bromine & Hydrogen-Chlorine Reactions)	
*	General Treatment of Chain Reactions (Ortho-Para Hydrogen Conversion and Hydrogen-B	Bromine
	Reactions)	358

*	Apparent Activation Energy of Chain Reactions	362
*	Chain Length	364
*	Rice-Herzfeld Mechanism of Organic Molecules Decomposition (Acetaldehyde)	366
*	Branching Chain Reactions and Explosions (H ₂ -O ₂ Reaction)	368
*	Kinetics of (One Intermediate) Enzymatic Reaction: Michaelis-Menten Treatment	371
*	Evaluation of Michaelis's Constant for Enzyme-Substrate Binding by Lineweaver-Burk Plo Eadie-Hofstee Methods	
*	Competitive and Non-Competitive Inhibition	378
*	Problems	388
*	Bibliography	389
CHAPT	TER 8	390
Elect	rochemistry – II: Ion Transport in Solutions	390
*	Ionic Movement Under the Influence of an Electric Field	390
*	Mobility of Ions	393
*	Ionic Drift Velocity and Its Relation with Current Density	394
*	Einstein Relation Between the Absolute Mobility and Diffusion Coefficient	398
*	The Stokes-Einstein Relation	401
*	The Nernst-Einstein Equation	403
*	Walden's Rule	404
*	The Rate-Process Approach to Ionic Migration	406
*	The Rate-Process Equation for Equivalent Conductivity	410
*	Total Driving Force for Ionic Transport: Nernst-Planck Flux Equation	412
*	Ionic Drift and Diffusion Potential	416
*	The Onsager Phenomenological Equations	418
*	The Basic Equation for the Diffusion	419
*	Planck-Henderson Equation for the Diffusion Potential	422
*	Problems	425
*	Bibliography	426
INDEX		427

Mandeep Dalal
(M.Sc, Ph.D, CSIR UGC - NET JRF, IIT - GATE)
Founder & Director, Dalal Institute
Contact No: +91-9802825820
Homepage: www.mandeepdalal.com
E-Mail: dr.mandeep.dalal@gmail.com

Mandeep Dalal is an Indian research scholar who is primarily working in the field of Science and Philosophy. He received his Ph.D in Chemistry from Maharshi Dayanand University, Rohtak, in 2018. He is also the Founder and Director of "Dalal Institute", an India-based educational organization which is trying to revolutionize the mode of higher education in Chemistry across the globe. He has published more than 40 research papers in various international scientific journals, including mostly from Elsevier (USA), IOP (UK) and Springer (Netherlands).

Other Books by the Author

A TEXTBOOK OF INORGANIC CHEMISTRY - VOLUME I, II, III, IV
A TEXTBOOK OF PHYSICAL CHEMISTRY - VOLUME I, II, III, IV
A TEXTBOOK OF ORGANIC CHEMISTRY - VOLUME I, II, III, IV

D DALAL INSTITUTE

Main Market, Sector-14, Rohtak, Haryana-124001 (+91-9802825820, info@dalalinstitute.com) www.dalalinstitute.com