Vibrational Spectra of Metal Carbonyls for Bonding and Structure Elucidation

Vibrational spectroscopy is one of the most important methods used for the characterization of metal carbonyls. This technique provides very useful information not only about the structural prototype of different metal carbonyl compositions, but also rationalizes the nature of bonding in them. Now, it is quite a well-known fact that the C–O vibration for free carbonyl group (CO gas) is typically denoted as v_{CO}, and absorbs at 2143 cm$^{-1}$. However, this C–O absorption shifts downward (sometimes upward) to cover a very wide range of wavenumber as the carbonyl ligand gets attached to a metal centre. This is obviously due to the fact that the energies of the v_{CO} band for the metal carbonyls directly correlate with the strength of the carbon-oxygen bond, and are inversely correlated with the strength of the π-backbonding between the metal and the carbon. In other words, the molecular orbital diagram of carbonyl group suggests that the highest occupied molecular orbital, used for σ-donation is weakly bonding; but the lowest unoccupied molecular orbital, used for accepting d-electron density from metal centre is strongly antibonding; therefore, the σ-donation does not affect the CO bond order very much but the acceptance of electron density in π^* orbital decreases the bond order and consequently the bond strength in a significant way. This effect reduces the force constant of C–O bond, while the magnitude of force constant for M–C will be increased by this backbonding. As a result, the enhancement of backbonding shifts the metal-carbon and carbon-oxygen stretching to higher and lower values, respectively. The main features about the bonding and structure of metal carbonyls which can be obtained from the vibrational spectra of metal carbonyls are discussed below:

1. π-Basicity of the Metal Centre

The π-basicity of the metal centre (and thus the C–O stretching frequency) depends upon a lot of factors like the nature and magnitude of the charge on metal centre, and the π-accepting tendency of ligands attached other than the carbonyl. A negative charge on the metal centre, or ligands with greater σ-donation and weaker π-acceptor strength, are expected to decrease the CO stretching frequency; while an accumulation of positive charge on metal centre, or ligands with weaker σ-donation stronger π-accepter strength are bound to increase the CO stretching frequency. For example, in the isoelectronic series of Ti\rightarrowFe, the hexacarbonyls show decreasing π-backbonding as one increases (makes more positive) the charge on the metal.

<table>
<thead>
<tr>
<th>Compound</th>
<th>$[\text{Ti(\text{CO})}_6]^{2-}$</th>
<th>$[\text{V(\text{CO})}_6]^{1-}$</th>
<th>$[\text{Cr(\text{CO})}_6]$</th>
<th>$[\text{Mn(\text{CO})}_6]^{1+}$</th>
<th>$[\text{Fe(\text{CO})}_6]^{2+}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_{CO} (cm$^{-1}$)</td>
<td>1748</td>
<td>1859</td>
<td>2000</td>
<td>2095</td>
<td>2204</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>$[\text{Hf(\text{CO})}_6]^{2-}$</th>
<th>$[\text{Ta(\text{CO})}_6]^{1-}$</th>
<th>$[\text{W(\text{CO})}_6]$</th>
<th>$[\text{Re(\text{CO})}_6]^{1+}$</th>
<th>$[\text{Os(\text{CO})}_6]^{2+}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_{CO} (cm$^{-1}$)</td>
<td>1757</td>
<td>1850</td>
<td>1977</td>
<td>2085</td>
<td>2190</td>
</tr>
</tbody>
</table>

Hence, π-basic ligands increase π-electron density at the metal, and improved backbonding reduces v_{CO}.

Copyright © Mandeep Dalal
2. **Tolman Electronic Parameter**

The electron donating or withdrawing ability of a ligand is calculated in terms of Tolman electronic parameter (TEP), named after the inventor, Chadwick A. Tolman. It is determined by measuring the frequency of the A_1 vibrational mode of carbonyl group in complex, Ni(CO)$_3$L by infrared spectroscopy, where L is the ligand being studied. Ni(CO)$_3$L was chosen as the model compound because such complexes can easily be synthesized from Ni(CO)$_4$.

![Image of Ni(CO)$_3$L complex]

The CO band is pretty much unique, and is rarely affected by other bands in the analyte's IR spectra. Moreover, owing to the small size of carbonyl ligand, steric factors do not muddle the analysis. The coordination of CO to a metal, typically decreases v_{CO} value from 2143 cm$^{-1}$ (free CO). This can be rationalized by π-backbonding, resulting from the sidewise overlap of metal orbitals of π-symmetry with the empty anti-bonding π^* orbitals on CO ligand. This increases the strength of metal-carbon bond, but also weakens the C–O bond. If some other ligand enhances the π-electrons-density on the metal, the CO bond strength decreases and so the v_{CO} value. On the other hand, if other ligands present compete with CO for π-backbonding, v_{CO} increases. TEP for selected phosphines are given below.

<table>
<thead>
<tr>
<th>L</th>
<th>P(t-bu)$_3$</th>
<th>P(Me)$_3$</th>
<th>P(Ph)$_3$</th>
<th>P(OEt)$_3$</th>
<th>PCl$_3$</th>
<th>PF$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_{CO}</td>
<td>2056.1</td>
<td>2064.1</td>
<td>2068.9</td>
<td>2076.3</td>
<td>2097.0</td>
<td>2110.8</td>
</tr>
</tbody>
</table>

The Tolman electronic parameter has been widely used to characterize the electronic properties of phosphine based ligands.

3. **Structural Prototype of Metal Carbonyls**

The symmetry behaviour of different metal carbonyls can be used to determine the number of infrared active vibrational modes, which in turn enable us to comment on structural prototypes. In other words, it is well known from the group theory that only those vibrational modes will be observed which transform as the electric-dipole moment operator; therefore, the number of observable infrared transitions for a particular geometry can be predicted theoretically. These predictions are then matched with the experimentally observed infrared spectra to shortlist the various possible structural prototypes. For instance, consider the case of five-coordinated homoleptic metal carbonyl complexes. The two possible geometries are square-pyramidal and trigonal bipyramidal.
For trigonal bipyramidal geometry, reducible representation based on five C–O bonds is:

<table>
<thead>
<tr>
<th>Γ_π</th>
<th>E</th>
<th>2C$_3$</th>
<th>3C$_2$</th>
<th>σ</th>
<th>2S$_i$</th>
<th>3σ</th>
<th>Irreducible components</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_3h</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>$2A_1' + A_2'' + E'$</td>
</tr>
</tbody>
</table>

Out of four irreducible representations, A_2'' transforms as z-component while E' transforms with x- and y-components of the dipole moment. Now, owing to two doubly degenerate vibrational modes (E'), only two peaks are expected in the experimental infrared spectrum. However, in the Raman infrared spectrum, three peaks are expected as only $2A_1'$ and E' irreducible components transform alongside the polarizability tensors.

For square pyramidal geometry, reducible representation based on five C–O bonds is:

<table>
<thead>
<tr>
<th>Γ_π</th>
<th>E</th>
<th>2C$_4$</th>
<th>C$_2$</th>
<th>2σ</th>
<th>2σ</th>
<th>Irreducible components</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_4v</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>$2A_1' + B_1 + E$</td>
</tr>
</tbody>
</table>

Out of four irreducible representations, $2A_1'$ transforms as z-component while E transforms with x- and y-components of the dipole moment. Now, owing to two doubly degenerate vibrational modes (E), only three peaks are expected in the experimental infrared spectrum. However, in the Raman infrared spectrum, four peaks are expected as all of the irreducible components transform alongside the polarizability tensors.

Similarly, the CO ligands of octahedral complexes, e.g. Cr(CO)$_6$, transform as A_{1g}, E_g, and T_{1u}, but only the T_{1u} mode (anti-symmetric stretch of the apical carbonyl ligands) is infrared-active; and therefore, only a single carbonyl stretching is observed in the IR-spectra of the octahedral metal hexacarboxyls. Spectra for complexes of lower symmetry are more complex. For example, the IR spectrum of Fe$_2$(CO)$_9$ displays CO bands at 2082, 2019, 1829 cm$^{-1}$. The number of observable infrared-active vibrational modes for some metal carbonyls are listed in the following below.
Table 1. The number of IR-active vibrational modes of several prototypical metal carbonyl complexes.

<table>
<thead>
<tr>
<th>No. of carbonyls</th>
<th>Structural prototype (No. of IR-peaks)</th>
<th>Structural prototype (No. of IR-peaks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Three</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Four</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1. continued on next page...
It is worthy to note that these rules apply to metal carbonyls in solution or the gas phase.
4. Differentiation of Terminal and Bridging Carbonyl Groups

The mode of attachment of carbonyl group to metal centre can also be determined by observed CO stretching frequencies. Terminal carbonyls absorb at the higher wavenumber in comparison to the bridging ones, which is obviously due to the fact that the extent of backbonding increases with the number of metal centres. Three main modes of attachment of carbonyl group with metal centre are:

- Terminal
- μ^2-bridging
- μ^3-bridging

The ν_{CO} follows the order: Terminal CO > μ^2-bridging > μ^3-bridging. The IR-range absorption for various types of carbonyls groups is listed below.

Table 2. The CO stretching frequencies in different metal carbonyl complexes.

<table>
<thead>
<tr>
<th>Bonding mode of CO</th>
<th>ν_{CO} (cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free CO</td>
<td>2143</td>
</tr>
<tr>
<td>Free CO$^+$</td>
<td>2184</td>
</tr>
<tr>
<td>Terminal CO</td>
<td>2120 - 1850</td>
</tr>
<tr>
<td>Symmetric μ^2-CO</td>
<td>1860 - 1750</td>
</tr>
<tr>
<td>Symmetric μ^3-CO</td>
<td>1730 - 1600</td>
</tr>
</tbody>
</table>

For instance, consider the rhodium carbonyl complexes:

<table>
<thead>
<tr>
<th>Compound</th>
<th>μ^1-CO, ν_{CO} (cm$^{-1}$)</th>
<th>μ^2-CO, ν_{CO} (cm$^{-1}$)</th>
<th>μ^3-CO, ν_{CO} (cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Rh}_2(\text{CO})_8$</td>
<td>2060, 2084</td>
<td>1846, 1862</td>
<td></td>
</tr>
<tr>
<td>$\text{Rh}4(\text{CO}){12}$</td>
<td>2044, 2070, 2074</td>
<td>1886</td>
<td></td>
</tr>
<tr>
<td>$\text{Rh}6(\text{CO}){16}$</td>
<td>2045, 2075</td>
<td></td>
<td>1819</td>
</tr>
</tbody>
</table>

There is also a semi-bridging mode that lies in between bridging and terminal bonding profile, and is usually labelled as asymmetric bridging carbonyls.
5. Calculation of CO Bond Order

Owing to the well-known fact that the highest occupied molecular orbital (HOMO) set in carbonyl ligand is of antibonding nature, a close correlation between the magnitude of backbonding and carbon-oxygen bond order can easily be established. The vibrational frequency of a bond depends upon the strength of the bond (which is measured by its force constant), and is given as:

\[v_{CO}(\text{cm}^{-1}) = \frac{1}{2\pi c} \sqrt{\frac{k}{\mu}} \]

(1)

Where \(k \) is the force constant and \(\mu \) is the reduced mass. The physical significance of \(k \) is implied in the fact that it is proportional to the strength of the bond involved. Therefore, any factor that increases the electron density on CO group will decrease its bond order and its force constant; and the vice-versa is also true. In other words, the decrease in \(v_{CO} \) indicates a decrease in CO bond order while the increase in carbonyl stretching is associated with increasing CO bond order. For instance, the infrared absorption of free CO occurs at 2143 cm\(^{-1}\) while the metal coordinated CO absorbs generally in range of 2120-1800 cm\(^{-1}\). This clearly establishes the fact that metal to ligand back donation does occur which in turn reduces it bond order. Hence, the accumulation of positive charge or the deficiency of electron density will impart a larger CO bond order than neutral or ionic metal carbonyl complexes. Consider the following trend in isoelectronic and isostructural metal carbonyls.

<table>
<thead>
<tr>
<th>Compound</th>
<th>[Ni(CO)(_4)]</th>
<th>[Co(CO)(_4)](^+)</th>
<th>[Fe(CO)(_4)](^2-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v_{CO}) (cm(^{-1}))</td>
<td>2046</td>
<td>1890</td>
<td>1730</td>
</tr>
<tr>
<td>M–C Bond order</td>
<td>1.33</td>
<td>1.89</td>
<td>2.16</td>
</tr>
<tr>
<td>C–O Bond order</td>
<td>2.64</td>
<td>2.14</td>
<td>1.85</td>
</tr>
<tr>
<td>M–C + C–O Bond order</td>
<td>3.97</td>
<td>4.03</td>
<td>4.01</td>
</tr>
</tbody>
</table>

The similar trend is observed in case of mixed carbonyls i.e. metal carbonyls having some other ligands alongside CO group. If the other ligand is electron withdrawing in nature, it would attract the electron density from the metal centre, which in turn would oppose the metal-carbonyl back bonding, yielding somewhat higher carbon-oxygen bond order and higher carbonyl stretching frequency. On the other hand, If the other ligand is electron donating in nature, it would donate the electron density to the metal centre, which in turn would support the metal-carbonyl back bonding, yielding somewhat lower carbon-oxygen bond order and lower carbonyl stretching frequency.

<table>
<thead>
<tr>
<th>Compound</th>
<th>[Ni(CO)(_4)]</th>
<th>[Ni(PF(_3))(CO)(_4)]</th>
<th>[Ni(PMe(_3))(CO)(_3)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v_{CO}) (cm(^{-1}))</td>
<td>2046</td>
<td>1990</td>
<td>1980</td>
</tr>
</tbody>
</table>

Hence, the bond order of CO in [Ni(PMe\(_3\))(CO)\(_3\)] is definitely lower than in [Ni(PF\(_3\))(CO)\(_4\)] because PMe\(_3\) is a weaker \(\pi \)-acceptor than PF\(_3\) ligand.
6. Study of Reaction Kinetics in Metal Carbonyls

Infrared spectroscopy is a very useful tool in the determination of reaction kinetics of metal carbonyl complexes. From Beer's Lambert Law, we know that the absorbance (A) is related to concentration (c) and path length (l) of the sample as:

$$A = \varepsilon cl = \log \frac{1}{T}$$

(1)

Where ε is the molar extinction coefficient and T is the transmittance of the solution. Therefore, the rate of disappearance or appearance of a characteristic infrared absorption band can be used to estimate the rate of change of concentration for the corresponding reactant or product. In other words, the rate intensity decrease in IR peaks of reactant, or the rate intensity increase in IR peaks of product metal carbonyl is proportional to rate of change of concentration; which in turn enable us to record various kinetic parameters from reaction order to activation energy or rate constants.
Table of Contents

CHAPTER 1 ... 11
Stereochemistry and Bonding in Main Group Compounds: ... 11
- VSEPR Theory .. 11
- \(d\pi-p\pi \) Bonds .. 23
- Bent Rule and Energetic of Hybridization ... 28
- Problems .. 42
- Bibliography .. 43

CHAPTER 2 ... 44
Metal-Ligand Equilibria in Solution: .. 44
- Stepwise and Overall Formation Constants and Their Interactions 44
- Trends in Stepwise Constants .. 46
- Factors Affecting Stability of Metal Complexes with Reference to the Nature of Metal Ion and
 Ligand .. 49
- Chelate Effect and Its Thermodynamic Origin .. 56
- Determination of Binary Formation Constants by \(\text{pH} \)-metry and Spectrophotometry 63
- Problems .. 68
- Bibliography .. 69

CHAPTER 3 ... 70
Reaction Mechanism of Transition Metal Complexes-I: .. 70
- Inert and Labile Complexes ... 70
- Mechanisms for Ligand Replacement Reactions ... 77
- Formation of Complexes from \(\text{Aquo} \) Ions ... 82
- Ligand Displacement Reactions in Octahedral Complexes- Acid Hydrolysis, Base Hydrolysis.... 86
- Racemization of Tris Chelate Complexes ... 89
- Electrophilic Attack on Ligands ... 92
- Problems .. 94
- Bibliography ... 95
CHAPTER 4 .. 96
 Reaction Mechanism of Transition Metal Complexes-II: ... 96
 ❖ Mechanism of Ligand Displacement Reactions in Square Planar Complexes 96
 ❖ The Trans Effect .. 98
 ❖ Theories of Trans Effect .. 103
 ❖ Mechanism of Electron Transfer Reactions – Types; Outer Sphere Electron Transfer Mechanism and Inner Sphere Electron Transfer Mechanism .. 106
 ❖ Electron Exchange .. 117
 ❖ Problems .. 121
 ❖ Bibliography ... 122

CHAPTER 5 .. 123
 Isopoly and Heteropoly Acids and Salts: ... 123
 ❖ Isopoly and Heteropoly Acids and Salts of Mo and W: Structures of Isopoly and Heteropoly Anions ... 123
 ❖ Problems .. 152
 ❖ Bibliography .. 153

CHAPTER 6 .. 154
 Crystal Structures: ... 154
 ❖ Structures of Some Binary and Ternary Compounds Such as Fluorite, Antifluorite, Rutile, Antirutile, Crystobalite, Layer Lattices - CdI₂, BiI₃; ReO₃, Mn₂O₃, Corundum, Pervoskite, Ilmenite and Calcite.154
 ❖ Problems .. 178
 ❖ Bibliography .. 179

CHAPTER 7 .. 180
 Metal-Ligand Bonding: ... 180
 ❖ Limitation of Crystal Field Theory ... 180
 ❖ Molecular Orbital Theory – Octahedral, Tetrahedral or Square Planar Complexes 184
 ❖ π-Bonding and Molecular Orbital Theory ... 198
 ❖ Problems .. 212
 ❖ Bibliography .. 213
CHAPTER 8 .. 214

Electronic Spectra of Transition Metal Complexes: ... 214
❖ Spectroscopic Ground States ... 214
❖ Correlation and Spin-Orbit Coupling in Free Ions for 1st Series of Transition Metals 243
❖ Orgel and Tanabe-Sugano Diagrams for Transition Metal Complexes ($d^l - d^g$ States) 248
❖ Calculation of Dq, B and β Parameters .. 280
❖ Effect of Distortion on the d-Orbital Energy Levels .. 300
❖ Structural Evidence from Electronic Spectrum ... 307
❖ Jahn-Tellor Effect .. 312
❖ Spectrochemical and Nephelauxetic Series ... 324
❖ Charge Transfer Spectra .. 328
❖ Electronic Spectra of Molecular Addition Compounds ... 336
❖ Problems .. 340
❖ Bibliography .. 341

CHAPTER 9 ... 342

Magnetic Properties of Transition Metal Complexes: ... 342
❖ Elementary Theory of Magneto-Chemistry ... 342
❖ Guoy’s Method for Determination of Magnetic Susceptibility ... 351
❖ Calculation of Magnetic Moments .. 354
❖ Magnetic Properties of Free Ions .. 359
❖ Orbital Contribution: Effect of Ligand-Field .. 362
❖ Application of Magneto-Chemistry in Structure Determination .. 370
❖ Magnetic Exchange Coupling and Spin State Cross Over .. 375
❖ Problems .. 384
❖ Bibliography .. 385

CHAPTER 10 ... 386

Metal Clusters: ... 386
❖ Structure and Bonding in Higher Boranes .. 386
❖ Wade’s Rules .. 401
Carboranes .. 407
Metal Carbonyl Clusters- Low Nuclearity Carbonyl Clusters ... 412
Total Electron Count (TEC) .. 417
Problems ... 424
Bibliography ... 425

CHAPTER 11 ... 426

Metal-II Complexes: ... 426
Metal Carbonyls: Structure and Bonding ... 426
Vibrational Spectra of Metal Carbonyls for Bonding and Structure Elucidation 439
Important Reactions of Metal Carbonyls ... 446
Preparation, Bonding, Structure and Important Reactions of Transition Metal Nitrosyl, Dinitrogen
and Dioxygen Complexes .. 450
Tertiary Phosphine as Ligand ... 463
Problems ... 469
Bibliography ... 470

INDEX .. 471
Mandeep Dalal is an Indian research scholar who is primarily working in the field of Science and Philosophy. He received his Ph.D in Chemistry from Maharshi Dayanand University, Rohtak, in 2018. He is also the Founder and Director of "Dalal Institute", a non-profit private educational organization in India which is trying to revolutionize the mode of higher education in Chemistry. He has published more than 25 research papers in various international scientific journals, including mostly from Elsevier (USA) and Springer (Europe).

Other Books by the Author

A TEXTBOOK OF INORGANIC CHEMISTRY - VOLUME I, II, III, IV
A TEXTBOOK OF PHYSICAL CHEMISTRY - VOLUME I, II, III, IV
A TEXTBOOK OF ORGANIC CHEMISTRY - VOLUME I, II, III, IV