CHAPTER 2

Metal-Ligand Equilibria in Solution:

❖ Stepwise and Overall Formation Constants and Their Interactions

The formation of a complex between a metal ion and a bunch of ligands is in fact usually a substitution reaction. However, ignoring the aquo ions, the formation of the complex can be written as:

\[\beta \]

\[M + nL \rightleftharpoons ML_n \]

Where M represents the metal center, L is the ligand type involved, n represents the number of ligands, and \(\beta \) is the equilibrium constant for the whole process. The expression for \(\beta \) (or \(\beta_n \)) for the above equilibria can simply be written as:

\[\beta_n = \frac{[ML_n]}{[M][L]^n} \]

Now because the magnitude of \(\beta_n \) is proportional to the molar concentration of complex formed, the equilibrium constant \(\beta_n \) is also called formation constant of the metal complex.

The formation constant or stability constant may be defined as the equilibrium constant for the formation of a complex in solution.

The magnitude of \(\beta_n \) is actually a measure of the strength of the interaction between the ligands, which come in contact to form the complex, and the metal center. However, it has also been observed that the complex formation in the solution phase occurs via a step-to-step addition of the ligands to the metal center used. For instance, the chemical equation (1), which shows the formation of a complex \(ML_n \), can also be written as a combination of many other equations representing a corresponding series of individual steps. In other words, the overall formation process of \(ML_n \) complex can be resolved into the following steps:

\[K_1 \]

\[M + L \rightleftharpoons ML \quad K_1 = \frac{[ML]}{[M][L]} \]

\[K_2 \]

\[ML + L \rightleftharpoons ML_2 \quad K_2 = \frac{[ML_2]}{[ML][L]} \]

\[K_3 \]

\[ML_2 + L \rightleftharpoons ML_3 \quad K_3 = \frac{[ML_3]}{[ML_2][L]} \]

The equations (3–5) and corresponding equilibrium constants can further be extended for the attack of \(n \) number of ligands as given below.
CHAPTER 2 Metal-Ligand Equilibria in Solution:

\[
ML_{n-1} + L \rightleftharpoons ML_n \quad K_n = \frac{[ML_n]}{[ML_{n-1}][L]}
\]

(6)

Where \(K_1, K_2, K_3, \ldots, K_n\) are the equilibrium constants for different steps, which in turn also imparted their conventional label of stepwise stability or the stepwise formation constants. The magnitude of these individual equilibrium constants indicates the extent of the formation of different species in a particular step.

Nevertheless, the stepwise stability constant of any particular step does not include the information about the previous ones. Therefore, to include the extent of formation of a complex up to a particular step, say 3rd, the overall formation constant \(\beta_3\) should be used as it indicates the extent of formation of \(ML_3\) as a whole. Moreover, it can also be shown that the overall formation constant up to the 3rd step \(\beta_3\) can be represented as the product of \(K_1, K_2, K_3\).

\[
\beta_3 = K_1 \times K_2 \times K_3
\]

(7)

\[
\beta_3 = \frac{[ML_1][ML_2][ML_3]}{[M][L]^3}
\]

(8)

\[
\beta_3 = \frac{[ML_1][ML_2][ML_3]}{[M][L]^3}
\]

(9)

\[
K_n = K_1 \times K_2 \times K_3 \times K_4 \times K_5 \times K_6 \times \ldots \times K_n
\]

(10)

The overall stability constant is generally reported in logarithmic scale as \(\log \beta\) as given below

\[
\log \beta_n = \log K_1 + \log K_2 + \log K_3 + \log K_4 + \log K_5 + \log K_6 + \ldots + \log K_n
\]

(11)

Or

\[
\log \beta_n = \sum_{i=1}^{n} \log K_i
\]

(12)

The whole process of calculating the overall formation constant can be exemplified by taking the case of \([Cu(NH_3)_2]^{2+}\) complex.

\[
Cu^{2+} + NH_3 \rightleftharpoons [Cu(NH_3)]^{2+} \quad K_1 = \frac{[[Cu(NH_3)]^{2+}]}{[Cu^{2+}][NH_3]}
\]

(13)

\[
[Cu(NH_3)]^{2+} + NH_3 \rightleftharpoons [Cu(NH_3)_2]^{2+} \quad K_2 = \frac{[[Cu(NH_3)_2]^{2+}]}{[[Cu(NH_3)]^{2+}][NH_3]}
\]

(14)

\[
[Cu(NH_3)_2]^{2+} + NH_3 \rightleftharpoons [Cu(NH_3)_3]^{2+} \quad K_3 = \frac{[[Cu(NH_3)_3]^{2+}]}{[[Cu(NH_3)_2]^{2+}][NH_3]}
\]

(15)
\[[\text{Cu(NH}_3\text{)}_3]^{2+} + \text{NH}_3 \xrightarrow{K_4} [\text{Cu(NH}_3\text{)}_4]^{2+} \]

The overall reaction with overall formation constant can be given by the equation (17) as:

\[\text{Cu}^{2+} + 4\text{NH}_3 \xrightarrow{\beta_4} [\text{Cu(NH}_3\text{)}_4]^{2+} \]

Now putting the experimental values of \(\log K_1 = 4.0, \log K_2 = 3.2, \log K_3 = 2.7 \) and \(\log K_4 = 2.0 \) in equation (12); the value of \(\log \beta_4 \) can be calculated as follows:

\[\log \beta_4 = 4.0 + 3.2 + 2.7 + 2.0 \]

\[\log \beta_4 = 11.9 \]

Finally, it should also be noted that the thermodynamic stability of metal complexes is calculated by the overall formation constant. If the value of \(\log \beta \) is more than 8, the complex is considered as thermodynamically stable; suggesting pretty much high stability for \([\text{Cu(NH}_3\text{)}_4]^{2+}\) complex. Moreover, the term dissociation or instability constant of a metal complex may also be defined here as the reciprocal of the stability constant.
HOME

CLASSES

NET-JRF, IIT-GATE, M.Sc Entrance & IIT-JAM

Want to study chemistry for CSIR UGC – NET JRF, IIT-GATE, M.Sc Entrance, IIT-JAM, UPSC, ISRO, IISc, TIFR, DRDO, BARC, IEST, GRE, Ph.D Entrance or any other competitive examination where chemistry is a paper?

READ MORE

BOOKS

Publications

Are you interested in books (Print and Ebook) published by Dalal Institute?

READ MORE

VIDEOS

Video Lectures

Want video lectures in chemistry for CSIR UGC – NET JRF, IIT-GATE, M.Sc Entrance, IIT-JAM, UPSC, ISRO, IISc, TIFR, DRDO, BARC, IEST, GRE, Ph.D Entrance or any other competitive examination where chemistry is a paper?

READ MORE

Postgraduate Level Classes

(NET-JRF & IIT-GATE)

Admission

Regular Program
Test Series
Distance Learning
Result

Undergraduate Level Classes

(M.Sc Entrance & IIT-JAM)

Admission

Regular Program
Test Series
Distance Learning
Result

A Textbook of Inorganic Chemistry – Volume 1

“A Textbook of Inorganic Chemistry – Volume 1 by Mandeep Dalal” is now available globally; including India, America and most of the European continent. Please ask at your local bookshop or get it online here.

READ MORE

Join the revolution by becoming a part of our community and get all of the member benefits like downloading any PDF document for your personal preview.

Sign Up
Table of Contents

CHAPTER 1 ... 11

Stereochemistry and Bonding in Main Group Compounds: .. 11
- VSEPR Theory .. 11
- $d\pi-p\pi$ Bonds .. 23
- Bent Rule and Energetic of Hybridization ... 28
- Problems .. 42
- Bibliography .. 43

CHAPTER 2 ... 44

Metal-Ligand Equilibria in Solution: ... 44
- Stepwise and Overall Formation Constants and Their Interactions .. 44
- Trends in Stepwise Constants .. 46
- Factors Affecting Stability of Metal Complexes with Reference to the Nature of Metal Ion and Ligand .. 49
- Chelate Effect and Its Thermodynamic Origin .. 56
- Determination of Binary Formation Constants by pH-metry and Spectrophotometry 63
- Problems .. 68
- Bibliography .. 69

CHAPTER 3 ... 70

Reaction Mechanism of Transition Metal Complexes – I: ... 70
- Inert and Labile Complexes ... 70
- Mechanisms for Ligand Replacement Reactions .. 77
- Formation of Complexes from Aquo Ions ... 82
- Ligand Displacement Reactions in Octahedral Complexes- Acid Hydrolysis, Base Hydrolysis 86
- Racemization of Tris Chelate Complexes ... 89
- Electrophilic Attack on Ligands .. 92
- Problems .. 94
- Bibliography .. 95
CHAPTER 4 ... 96

Reaction Mechanism of Transition Metal Complexes – II: .. 96

  Mechanism of Ligand Displacement Reactions in Square Planar Complexes 96
  The Trans Effect ... 98
  Theories of Trans Effect ... 103
  Mechanism of Electron Transfer Reactions – Types; Outer Sphere Electron Transfer Mechanism and Inner Sphere Electron Transfer Mechanism ... 106
  Electron Exchange .. 117
  Problems ... 121
  Bibliography .. 122

CHAPTER 5 ... 123

Isopoly and Heteropoly Acids and Salts: .. 123

  Isopoly and Heteropoly Acids and Salts of Mo and W: Structures of Isopoly and Heteropoly Anions .. 123
  Problems .. 152
  Bibliography .. 153

CHAPTER 6 ... 154

Crystal Structures: .. 154

  Structures of Some Binary and Ternary Compounds Such as Fluorite, Antifluorite, Rutile, Antirutile, Crystobalite, Layer Lattices - CdI₂, BiI₃; ReO₃, Mn₂O₃, Corundum, Pervoskite, Ilmenite and Calcite .. 154
  Problems .. 178
  Bibliography .. 179

CHAPTER 7 ... 180

Metal-Ligand Bonding: .. 180

  Limitation of Crystal Field Theory .. 180
  Molecular Orbital Theory – Octahedral, Tetrahedral or Square Planar Complexes 184
  π-Bonding and Molecular Orbital Theory .. 198
  Problems .. 212
  Bibliography .. 213
Mandeep Dalal is an Indian research scholar who is primarily working in the field of Science and Philosophy. He received his Ph.D in Chemistry from Maharshi Dayanand University, Rohtak, in 2018. He is also the Founder and Director of "Dalal Institute", an India-based educational organization which is trying to revolutionize the mode of higher education in Chemistry across the globe. He has published more than 40 research papers in various international scientific journals, including mostly from Elsevier (USA), IOP (UK) and Springer (Netherlands).

Mandeep Dalal
(M.Sc, Ph.D, CSIR UGC - NET JRF, IIT - GATE)
Founder & Director, Dalal Institute
Contact No: +91-9802825820
Homepage: www.mandeepdalal.com
E-Mail: dr.mandeep.dalal@gmail.com

Other Books by the Author

A TEXTBOOK OF INORGANIC CHEMISTRY - VOLUME I, II, III, IV
A TEXTBOOK OF PHYSICAL CHEMISTRY - VOLUME I, II, III, IV
A TEXTBOOK OF ORGANIC CHEMISTRY - VOLUME I, II, III, IV

DALAL INSTITUTE
Main Market, Sector 14, Rohtak, Haryana 124001, India
(+91-9802825820, info@dalalinstitute.com)
www.dalalinstitute.com