CHAPTER 3 Reaction Mechanism of Transition Metal Complexes-I:

Mechanisms for Ligand Replacement Reactions

The ligand displacement in metal complexes is said to have been taken place if one of the previously attached ligand got replaced by another ligand from its coordination sphere. The scheme can be shown as:

$$\text{MA}_n\text{L} + \text{E} \rightarrow \text{MA}_n\text{E} + \text{L}$$ (2)

Where, ligand L is the leaving group present in the complex, E is the entering ligand which is nucleophilic in nature. The coordination number of the complex remains the same.

Ligand Displacement Mechanism in Octahedral Complexes

In octahedral complexes, the replacement of the ligand can occur through dissociative, associative or by interchange mechanism. It has also been observed that most of the ligand displacement takes place through the interchange route rather than purely associative or dissociative.

1. Dissociative or SN1 Mechanism (D): In this mechanism, first of all a metal ligand bond breaks and the coordination number of the complex reduces from six to five forming a penta-coordinated intermediate complex. After that the entering group attacks this intermediate and the coordination number again gets restored to six giving octahedral geometry. The whole process can be shown as

slow \[\text{MA}_5\text{L} \rightarrow \text{MA}_5 \rightarrow \text{MA}_5\text{E} \rightarrow \text{L} \rightarrow \text{fast}\] (3)

The first step is the slow step and hence it is also the rate determining step for the process. The overall rate is:

$$\text{Rate} = k[\text{MA}_5\text{L}]$$ (4)

The reaction is of first order and is independent of the concentration of the entering ligand. These type of reactions are also called as unimolecular nucleophilic substitution or SN1 reactions.

Figure 5. Pathway for ligand displacement reactions in octahedral metal complexes through SN1.
Most of the ligand substitution reactions in octahedral complexes occur through dissociative or by interchange dissociative mechanism which in turn can be evidenced by the following rules

i) The rate of the ligand substitution is almost independent of the concentration of the entering ligand.

ii) The rate of the ligand substitution increases as the steric bulk around the metal centre increase.

iii) The entropy of activation, ΔS^\ddagger, is positive as there are more species in activated complex than in reactant.

iv) The volume of activation, ΔV^\ddagger, for the reaction is also found to be positive.

2. Associative or SN$_2$ Mechanism (A): In this mechanism, the bond breaking with the leaving group and bond making with the entering group takes place simultaneously and the coordination number of the metal complex increases from six to seven forming a hepta-coordinated intermediate complex. After that the leaving group dissociates itself from the intermediate complex completely and the coordination number of the complex again gets restored to six giving octahedral geometry. The whole process can be shown as

$$\text{slow} \quad \frac{\text{fast}}{k} \quad \text{MA}_5L + E \rightarrow \text{MA}_5LE \rightarrow \text{MA}_5E - L$$ \hspace{1cm} (5)

The first step is the slow step and hence it is also the rate determining step for the process. The overall rate is given by

$$\text{Rate} = k[\text{MA}_5L][E]$$ \hspace{1cm} (6)

The reaction is of second order and is depends of the concentration of the reactant complex as well as the concentration of the entering ligand. These type of reactions are also called as bimolecular nucleophilic substitution or SN$_2$ reactions.
CHAPTER 3 Reaction Mechanism of Transition Metal Complexes-I:

![Reaction Mechanism Diagram](image)

Figure 7. The general reaction mechanism for ligand displacement reactions in octahedral metal complexes through SN$_2$ pathway.

![Reaction Coordinate Diagram](image)

Figure 8. The typical reaction coordinate diagram for ligand displacement reactions in octahedral metal complexes through SN$_2$ mechanism.

i) The rate of the ligand substitution is increases with concentration of the entering ligand.

ii) The rate of the ligand substitution decreases as the steric bulk around the metal centre increase.

iii) The entropy of activation, ΔS^\dagger, is negative as there are lesser number species in activated complex than in reactant.

iv) The volume of activation, ΔV^\dagger, for the reaction is also found to be negative.

3. **Interchange mechanism (I):** It has been observed that most of the ligand displacement reaction are neither purely associative or dissociative but follow an intermediate mechanism in which bond breaking and bond
making takes place simultaneously and no penta-coordinated or hepta-coordinated intermediate have actually been isolated. These types of reaction proceeds via a transition state just like in organic SN₂ reactions.

\[MA_5L + E \rightarrow MA_5LE \rightarrow MA_5E \]

(7)

However, if rate of the reaction is strongly dependent on the concentration of the entering ligand which indicates that bond making is more important in determining the rate of the reaction than the displacement is said to have been taken place via interchange associative or Iₐ mechanism. On the other hand, if rate of the reaction is almost independent of the concentration of the entering ligand which clearly indicates that bond breaking is more important in determining the rate of the reaction than the displacement is said to have been taken place via interchange dissociative or Iₐ mechanism.

![Reaction Coordinates](image)

Figure 9. The typical reaction coordinate diagram for ligand displacement reactions in octahedral metal complexes through interchange mechanism.

Ligand Displacement Mechanism in Square-planar Complexes

In square-planar complexes, the ligand displacement is much more favourable through the associative route than that of dissociative which can be understood in term of low steric crowding due lesser coordination number. The general ligand displacement can be written as:

\[MA_3L + E \xrightarrow{\text{slow}} MA_3LE \xrightarrow{k} MA_3E \]

(8)

The intermediate state is trigonal-bipyramidal and undergoes rapid Berry-pseudo-rotation followed by the elimination of the leaving group.
Figure 10. The general reaction mechanism for ligand displacement reactions in square-planar complexes.

Figure 11. The typical reaction coordinate diagram for ligand displacement reactions in square-planar complexes through associative mechanism.

A more in-depth visualization of ligand displacement reactions in square-planar complexes is given below in which the involvement of Berry-pseudorotation is depicted more precisely.

Figure 12. Involvement of Berry-pseudorotation in the ligand displacement in square-planar complexes.
A TEXTBOOK OF INORGANIC CHEMISTRY

Volume I

MANDEEP DALAL
Table of Contents

CHAPTER 1 .. 11
Stereochemistry and Bonding in Main Group Compounds: ... 11
 • VSEPR Theory .. 11
 • $d\pi-p\pi$ Bonds .. 23
 • Bent Rule and Energetic of Hybridization... 28
 • Problems .. 42
 • Bibliography .. 43

CHAPTER 2 ... 44
Metal-Ligand Equilibria in Solution: .. 44
 • Stepwise and Overall Formation Constants and Their Interactions ... 44
 • Trends in Stepwise Constants .. 46
 • Factors Affecting Stability of Metal Complexes with Reference to the Nature of Metal Ion and ... 49
 • Chelate Effect and Its Thermodynamic Origin .. 56
 • Determination of Binary Formation Constants by pH-metry and Spectrophotometry 63
 • Problems .. 68
 • Bibliography .. 69

CHAPTER 3 ... 70
Reaction Mechanism of Transition Metal Complexes-I: ... 70
 • Inert and Labile Complexes ... 70
 • Mechanisms for Ligand Replacement Reactions .. 77
 • Formation of Complexes from Aqua Ions... 82
 • Ligand Displacement Reactions in Octahedral Complexes- Acid Hydrolysis, Base Hydrolysis 86
 • Racemization of Tris Chelate Complexes ... 89
 • Electrophilic Attack on Ligands .. 92
 • Problems .. 94
 • Bibliography .. 95
CHAPTER 8 .. 214
Electronic Spectra of Transition Metal Complexes: ... 214
 • Spectroscopic Ground States ... 214
 • Correlation and Spin-Orbit Coupling in Free Ions for 1st Series of Transition Metals 243
 • Orgel and Tanabe-Sugano Diagrams for Transition Metal Complexes ($d^1-\cdot d^6$ States) 248
 • Calculation of D_q, B and β Parameters ... 280
 • Effect of Distortion on the d-Orbital Energy Levels ... 300
 • Structural Evidence from Electronic Spectrum ... 307
 • Jahn-Tellar Effect ... 312
 • Spectrochemical and Nephelauxetic Series .. 324
 • Charge Transfer Spectra .. 328
 • Electronic Spectra of Molecular Addition Compounds ... 336
 • Problems .. 340
 • Bibliography .. 341

CHAPTER 9 .. 342
Magnetic Properties of Transition Metal Complexes: ... 342
 • Elementary Theory of Magneto-Chemistry .. 342
 • Guoy's Method for Determination of Magnetic Susceptibility .. 351
 • Calculation of Magnetic Moments .. 354
 • Magnetic Properties of Free Ions .. 359
 • Orbital Contribution: Effect of Ligand-Field .. 362
 • Application of Magneto-Chemistry in Structure Determination .. 370
 • Magnetic Exchange Coupling and Spin State Cross Over .. 375
 • Problems .. 384
 • Bibliography .. 385

CHAPTER 10 ... 386
Metal Clusters: .. 386
 • Structure and Bonding in Higher Boranes ... 386
 • Wade's Rules .. 401
Mandeep Dalal is an Indian research scholar who is primarily working in the field of Science and Philosophy. He received his Ph.D in Chemistry from Maharshi Dayanand University, Rohtak, in 2018. He is also the Founder and Director of "Dalal Institute", a non-profit private educational organization in India which is trying to revolutionize the mode of higher education in Chemistry. He has published more than 25 research papers in various international scientific journals, including mostly from Elsevier (USA) and Springer (Europe).