Racemization of Tris Chelate Complexes

The tris chelate metal complexes exist in two enantiomeric forms, called as Λ and Δ configurations.

![Enantiomeric forms of octahedral tris chelate complexes.](image)

Figure 18. Enantiomeric forms of octahedral tris chelate complexes.

The point group symmetry for the above system D₃. There are also geometrical isomers when the bidentate ligands are unsymmetrical in nature like glycinato. The total number isomer, in that case, is four as:

![Enantiomeric forms of octahedral tris chelate complexes with the unsymmetrical ligand.](image)

Figure 19. Enantiomeric forms of octahedral tris chelate complexes with the unsymmetrical ligand.

LEGAL NOTICE

This document is an excerpt from the book entitled “A Textbook of Inorganic Chemistry – Volume 1 by Mandeep Dalal”, and is the intellectual property of the Author/Publisher. The content of this document is protected by international copyright law and is valid only for the personal preview of the user who has originally downloaded it from the publisher’s website (www.dalalinstitute.com). Any act of copying (including plagiarizing its language) or sharing this document will result in severe civil and criminal prosecution to the maximum extent possible under law.
The interconversion or the racemization of tris chelate complexes in case symmetrical ligands can take place via with or without the rupturing of the metal-ligand bond.

1. Racemization without the breakage of metal-ligand bond: The two most common processes suggested for the interconversion of the two enantiomeric forms are the trigonal or Bailar twist and the rhombic or Ray-Dutt twist. Both of the processes can be visualized from the following mechanism.

![Diagram of Racemization](image)

(a)

Figure 20. Racemization of tris chelate complexes through (a) trigonal or Bailar twist (b) rhombic or Ray-Dutt twist.

The Bailar twist mechanism proposes that the racemization of octahedral metal complexes with three bidentate rings normally occurs via the formation of an intermediate of trigonal prismatic symmetry (D_{3h} point group). In honor of John C. Bailar, Jr., the inventor of the process, the pathway is called as Bailar twist. The second route is called the Ray-Dutt twist, a mechanism proposed also for the racemization of octahedral metal complexes with three bidentate chelate rings. These complexes usually adopt an octahedral geometry in their ground states and are therefore optically active. The Ray-Dutt pathway includes the formation of an intermediate species with C_2v point group symmetry. The name Ray-Dutt twist is in the honor of P. C. Ray and N. K. Dutt, the inorganic chemists who suggested this mechanism.

2. Racemization with the breakage of metal-ligand bond: There are four different possible pathways suggested for the interconversion of the two enantiomeric forms of tris chelate complexes through the dissociative mechanism. After the detachment of one of the atoms of the bidentate ligand, a five-coordinated intermediate with trigonal-bipyramidal or square-pyramidal geometry is formed which converts into another enantiomer afterward. The whole process can be visualized as follows. However, it is also observed that the square-pyramidal intermediate may have a weakly bonded solvent molecule at the sixth site in some cases.
Figure 21. Racemization of tris chelate complexes through ring-opening mechanism via (a,b) trigonal-bipyramidal and (c,d) square-pyramidal intermediate.
Want to study chemistry for CSIR UGC - NET JRF, IIT-GATE, M.Sc Entrance, IIT-JAM, UPSC, ISRO, IISC, TIFR, DRDO, BARC, JEST, GRE, PH.D Entrance or any other competitive examination where chemistry is a paper?

READ MORE

Postgraduate Level Classes
(NET-JRF & IIT-GATE)

Admission
Regular Program
Distance Learning
Test Series
Result

Undergraduate Level Classes
(M.Sc Entrance & IIT-JAM)

Admission
Regular Program
Distance Learning
Test Series
Result

A Textbook of Inorganic Chemistry – Volume 1

“A Textbook of Inorganic Chemistry – Volume 1 by Mandeep Dalal” is now available globally; including India, America and most of the European continent. Please ask at your local bookshop or get it online here.

READ MORE

Join the revolution by becoming a part of our community and get all of the member benefits like downloading any PDF document for your personal preview.

Sign Up
Table of Contents

CHAPTER 1 ... 11

Stereochemistry and Bonding in Main Group Compounds: .. 11
 ❖ VSEPR Theory .. 11
 ❖ $d\pi-p\pi$ Bonds .. 23
 ❖ Bent Rule and Energetic of Hybridization ... 28
 ❖ Problems .. 42
 ❖ Bibliography ... 43

CHAPTER 2 ... 44

Metal-Ligand Equilibria in Solution: ... 44
 ❖ Stepwise and Overall Formation Constants and Their Interactions .. 44
 ❖ Trends in Stepwise Constants ... 46
 ❖ Factors Affecting Stability of Metal Complexes with Reference to the Nature of Metal Ion and Ligand .. 49
 ❖ Chelate Effect and Its Thermodynamic Origin ... 56
 ❖ Determination of Binary Formation Constants by pH-metry and Spectrophotometry 63
 ❖ Problems .. 68
 ❖ Bibliography ... 69

CHAPTER 3 ... 70

Reaction Mechanism of Transition Metal Complexes – I: .. 70
 ❖ Inert and Labile Complexes .. 70
 ❖ Mechanisms for Ligand Replacement Reactions ... 77
 ❖ Formation of Complexes from Aquo Ions ... 82
 ❖ Ligand Displacement Reactions in Octahedral Complexes- Acid Hydrolysis, Base Hydrolysis ... 86
 ❖ Racemization of Tris Chelate Complexes .. 89
 ❖ Electrophilic Attack on Ligands ... 92
 ❖ Problems .. 94
 ❖ Bibliography ... 95
CHAPTER 4 ... 96
Reaction Mechanism of Transition Metal Complexes – II: .. 96
 ❖ Mechanism of Ligand Displacement Reactions in Square Planar Complexes............................ 96
 ❖ The Trans Effect .. 98
 ❖ Theories of Trans Effect .. 103
 ❖ Mechanism of Electron Transfer Reactions – Types; Outer Sphere Electron Transfer Mechanism and Inner Sphere Electron Transfer Mechanism .. 106
 ❖ Electron Exchange .. 117
 ❖ Problems ... 121
 ❖ Bibliography .. 122
CHAPTER 5 ... 123
Isopoly and Heteropoly Acids and Salts: .. 123
 ❖ Isopoly and Heteropoly Acids and Salts of Mo and W: Structures of Isopoly and Heteropoly Anions ..123
 ❖ Problems .. 152
 ❖ Bibliography .. 153
CHAPTER 6 ... 154
Crystal Structures: .. 154
 ❖ Structures of Some Binary and Ternary Compounds Such as Fluorite, Antifluorite, Rutile, Antirutile, Crystobalite, Layer Lattices - CdI$_2$, BiI$_3$, ReO$_3$, Mn$_2$O$_3$, Corundum, Pervoskite, Ilmenite and Calcite...154
 ❖ Problems .. 178
 ❖ Bibliography .. 179
CHAPTER 7 ... 180
Metal-Ligand Bonding: .. 180
 ❖ Limitation of Crystal Field Theory .. 180
 ❖ Molecular Orbital Theory – Octahedral, Tetrahedral or Square Planar Complexes 184
 ❖ π-Bonding and Molecular Orbital Theory .. 198
 ❖ Problems .. 212
 ❖ Bibliography .. 213
CHAPTER 8: Electronic Spectra of Transition Metal Complexes: 214
- Spectroscopic Ground States 214
- Correlation and Spin-Orbit Coupling in Free Ions for 1st Series of Transition Metals 243
- Orgel and Tanabe-Sugano Diagrams for Transition Metal Complexes (d^1 – d^9 States) 248
- Calculation of Dq, B and β Parameters 280
- Effect of Distortion on the d-Orbital Energy Levels 300
- Structural Evidence from Electronic Spectrum 307
- Jahn-Tellor Effect 312
- Spectrochemical and Nephelauxetic Series 324
- Charge Transfer Spectra 328
- Electronic Spectra of Molecular Addition Compounds 336
- Problems 340
- Bibliography 341

CHAPTER 9: Magnetic Properties of Transition Metal Complexes: 342
- Elementary Theory of Magneto-Chemistry 342
- Guoy’s Method for Determination of Magnetic Susceptibility 351
- Calculation of Magnetic Moments 354
- Magnetic Properties of Free Ions 359
- Orbital Contribution: Effect of Ligand-Field 362
- Application of Magneto-Chemistry in Structure Determination 370
- Magnetic Exchange Coupling and Spin State Cross Over 375
- Problems 384
- Bibliography 385

CHAPTER 10: Metal Clusters: 386
- Structure and Bonding in Higher Boranes 386
- Wade’s Rules 401
Mandeep Dalal is an Indian research scholar who is primarily working in the field of Science and Philosophy. He received his Ph.D in Chemistry from Maharshi Dayanand University, Rohtak, in 2018. He is also the Founder and Director of "Dalal Institute", an India-based educational organization which is trying to revolutionize the mode of higher education in Chemistry across the globe. He has published more than 40 research papers in various international scientific journals, including mostly from Elsevier (USA), IOP (UK) and Springer (Netherlands).

Other Books by the Author

A TEXTBOOK OF INORGANIC CHEMISTRY - VOLUME I, II, III, IV
A TEXTBOOK OF PHYSICAL CHEMISTRY - VOLUME I, II, III, IV
A TEXTBOOK OF ORGANIC CHEMISTRY - VOLUME I, II, III, IV

DALAL INSTITUTE
Main Market, Sector 14, Rohtak, Haryana 124001, India
(+91-9802825820, info@dalalinstitute.com)
www.dalalinstitute.com