CHAPTER 1: Nature of Bonding in Organic Molecules

❖ **Huckel’s Rule: Energy Level of \(\pi \)-Molecular Orbitals**

Huckel’s rule states that all the planar and conjugated systems with \(4n + 2 \) \(\pi \)-electrons will be aromatic, and therefore, will be more stable than their acyclic conjugates.

The theoretical basis for Hückel's rule is the Hückel molecular orbital theory (HMO), which was proposed by Erich Hückel in 1930. This theory considers a very simple linear combination of atomic orbitals molecular orbitals method for the determination of energies of molecular orbitals of \(\pi \)-electrons in \(\pi \)-delocalized molecules, such as ethylene, benzene, butadiene, and pyridine.

![Diagram of aromatc and antiaromatic structures](image)

\(4n+2 \) \(\pi \)-electrons
(aromatic)

\(4n \) \(\pi \)-electrons
(antiaromatic)

❖ **Main Features of Hückel Molecular Orbital Theory**

1. It is limited to conjugated hydrocarbons only.
2. Only \(\pi \)-electron density of MOs is included because these determine much of the spectral and chemical properties of these compounds. The \(\sigma \)-electron density is thought to form the framework of the molecule and \(\sigma \)-connectivity is employed to find whether two \(\pi \)-orbitals interact or not. Nevertheless, the orbitals generated by \(\sigma \)-orbitals are overlooked and presumed not to interact with \(\pi \)-electrons, which is called as \(\sigma \)-\(\pi \) separability. It is defensible by the orthogonality of \(\pi \) and \(\sigma \) orbitals in planar molecular geometries. That’s why the Hückel method is only limited to systems that are nearly or completely planar.
3. The theory is based on the variational method to the linear combination of atomic orbitals and makes simple assumptions about the resonance, overlap, and Coulomb integrals of these atomic orbitals. Also, it doesn’t try to solve the Schrödinger equation, and neither the functional form of the atomic basis nor particulars of the Hamiltonian involved.
4. For different hydrocarbons, the theory takes atomic connectivity as the only input value; empirical parameters are only required after the incorporation of heteroatoms.
5. The theory successfully predicts the number of energy levels for a given molecule, their degeneracy and it expresses the energies molecular orbital in terms of two parameters, called \(\alpha \), the energy of an electron in an atomic \(2p \) orbital, and \(\beta \) which represents the energy of interaction between two \(2p \) orbitals. The typical convention makes both \(\alpha \) and \(\beta \) be as negative quantities. In order to fully understand and equate systems in a qualitative or semi-quantitative manner, clear numerical values for these parameters are typically not needed.
6. This theory also enables the calculation of charge density for each atom in the \(\pi \) framework, the fractional bond order between any two carbon atoms, and the overall dipole moment of the molecule.
Energy Level of Some Typical \(\pi \)-Molecular Orbitals

The exact procedure to determine the energy levels of conjugated \(\pi \)-bonded systems is beyond the scope of this book. However, the results from theory can be concluded in some simple mathematical expressions which can be used to yield the required energy levels. For linear and cyclic systems (with \(N \) atoms), general solutions are given below.

1. **Linear system (polyene/polyenyl):** The energy of different molecular orbitals for these types of systems can be obtained from the expression given below.

\[
E_k = \alpha + 2\beta \cos \left(\frac{(k + 1)\pi}{N + 1} \right)
\]

Where \(k = 0, 1, 2, 3 \ldots N - 1 \) and \(N \) is the number conjugated carbons. Once the energies of different molecular orbitals are obtained, they should be arranged in accenting order on the energy level diagram.

i) Ethylene: In case of ethylene, \(N = 2 \), we get

For \(k = 0 \)

\[
E_0 = \alpha + 2\beta \cos \left(\frac{(0 + 1)\pi}{2 + 1} \right) = \alpha + \beta
\]

For \(k = 1 \)

\[
E_1 = \alpha + 2\beta \cos \left(\frac{(1 + 1)\pi}{2 + 1} \right) = \alpha - \beta
\]

The corresponding energy level diagram is given below.

![Energy Level Diagram of Ethylene](image)

Figure 13. The \(\pi \)-molecular orbital energy level diagram of ethylene.
ii) Allyl: In case of allyl, $N = 3$, we get

for $k = 0$

$$E_0 = \alpha + 2\beta \cos\left(\frac{(0 + 1)\pi}{(3 + 1)}\right) = \alpha + \sqrt{2}\beta$$ \hspace{1cm} (4)

for $k = 1$

$$E_1 = \alpha + 2\beta \cos\left(\frac{(1 + 1)\pi}{(3 + 1)}\right) = \alpha$$ \hspace{1cm} (5)

for $k = 2$

$$E_2 = \alpha + 2\beta \cos\left(\frac{(2 + 1)\pi}{(3 + 1)}\right) = \alpha - \sqrt{2}\beta$$ \hspace{1cm} (6)

The corresponding energy level diagram is given below.

![Energy Level Diagram](image)

Figure 14. The π-molecular orbital energy level diagram of allyl.

iii) Butadiene: In case of butadiene, $N = 4$, we get

for $k = 0$

$$E_0 = \alpha + 2\beta \cos\left(\frac{(0 + 1)\pi}{(4 + 1)}\right) = \alpha + 1.618 \beta$$ \hspace{1cm} (7)

for $k = 1$

$$E_1 = \alpha + 2\beta \cos\left(\frac{(1 + 1)\pi}{(4 + 1)}\right) = \alpha + 0.618 \beta$$ \hspace{1cm} (8)

for $k = 2$

$$E_2 = \alpha + 2\beta \cos\left(\frac{(2 + 1)\pi}{(4 + 1)}\right) = \alpha - 0.618 \beta$$ \hspace{1cm} (9)

for $k = 3$

$$E_3 = \alpha + 2\beta \cos\left(\frac{(3 + 1)\pi}{(4 + 1)}\right) = \alpha - 1.618 \beta$$ \hspace{1cm} (10)
The corresponding energy level diagram is given below.

![Energy Level Diagram](image)

Figure 15. The π-molecular orbital energy level diagram of butadiene.

2. Cyclic system, Hückel topology (annulene/annulenyl): The energy of different molecular orbitals for these types of systems can be obtained from the expression given below.

\[
E_k = \alpha + 2\beta \cos \frac{2k\pi}{N} \tag{11}
\]

Where \(k = 0, 1, 2, 3 \ldots N - 1 \) and \(N \) is the number conjugated carbons. Once the energies of different molecular orbitals are obtained, they should be arranged in accenting order on the energy level diagram.

i) Cyclopropenyl: In case of cyclopropenyl, \(N = 3 \), we get

For \(k = 0 \)

\[
E_0 = \alpha + 2\beta \cos \frac{2(0)\pi}{3} = \alpha + 2\beta \tag{12}
\]

For \(k = 1 \)

\[
E_1 = \alpha + 2\beta \cos \frac{2(1)\pi}{3} = \alpha - \beta \tag{13}
\]

For \(k = 1 \)

\[
E_2 = \alpha + 2\beta \cos \frac{2(2)\pi}{3} = \alpha - \beta \tag{14}
\]
The corresponding energy level diagram is given below.

\[
E_0 = \alpha + 2\beta \\
E_1 = E_2 = \alpha - \beta \\
E_3 = E_4 = \alpha \\
E_6 = \alpha + 2\beta
\]

Figure 16. The π-molecular orbital energy level diagram of cyclopropenyl.

ii) Cyclobutadiene: In case of cyclobutadiene, \(N = 4 \), we get

\[
\text{for } k = 0 \quad E_0 = \alpha + 2\beta \cos \frac{2(0)\pi}{4} = \alpha + 2\beta
\]

\[
\text{for } k = 1 \quad E_1 = \alpha + 2\beta \cos \frac{2(1)\pi}{4} = \alpha
\]

\[
\text{for } k = 2 \quad E_2 = \alpha + 2\beta \cos \frac{2(2)\pi}{4} = \alpha - 2\beta
\]

\[
\text{for } k = 3 \quad E_3 = \alpha + 2\beta \cos \frac{2(3)\pi}{4} = \alpha
\]

The corresponding energy level diagram is given below.

\[
E_0 = \alpha - 2\beta \\
E_1 = E_3 = \alpha \\
E_6 = \alpha + 2\beta
\]

Figure 17. The π-molecular orbital energy level diagram of cyclobutadiene.
iii) Benzene: In case of butadiene, $N = 6$, we get

\[
E_0 = \alpha + 2\beta \cos \left(\frac{2(0)\pi}{6}\right) = \alpha + 2\beta \quad \text{(16)}
\]

for $k = 0$

\[
E_1 = \alpha + 2\beta \cos \left(\frac{2(1)\pi}{6}\right) = \alpha + \beta \quad \text{(17)}
\]

for $k = 1$

\[
E_2 = \alpha + 2\beta \cos \left(\frac{2(2)\pi}{6}\right) = \alpha - \beta \quad \text{(18)}
\]

for $k = 2$

\[
E_3 = \alpha + 2\beta \cos \left(\frac{2(3)\pi}{6}\right) = \alpha - 2\beta \quad \text{(19)}
\]

for $k = 3$

\[
E_4 = \alpha + 2\beta \cos \left(\frac{2(4)\pi}{6}\right) = \alpha - \beta \quad \text{(20)}
\]

for $k = 4$

\[
E_5 = \alpha + 2\beta \cos \left(\frac{2(1)\pi}{6}\right) = \alpha + \beta \quad \text{(21)}
\]

for $k = 5$

The corresponding energy level diagram is given below.

Figure 18. The typical π-molecular orbital energy level diagram of the benzene molecule.
The corresponding Frost circle is given below.

The energy levels for cyclic systems can be obtained using the Frost circle method (named after the American chemist A. A. Frost). A circle with a center at \(\alpha \) with a radius of \(2\beta \) is inscribed with a regular polygon with \(N \) sides with one vertex pointing downward; the \(y \)-coordinate of the vertices of the polygon then shows the energies of different orbital of the \([N]\)annulene/annulenyl system. Corresponding mnemonics exist for Möbius and linear systems. The energy level diagrams of different cyclic systems are assisted with the corresponding Frost cycle.

In the later period, it was extended to conjugated molecules with heteroatoms like pyrrole, pyridine, and furan. A more dramatic extension of the method (Hückel molecular orbital method) to include \(\sigma \)-electrons, known as the extended Hückel method (EHM), was developed by Roald Hoffmann.

The Hückel method’s extension provides some degree of quantitative accuracy for organic compounds in general and was employed to give computational justification for the famous Woodward-Hoffmann rules. In order to differentiate the original route from Hoffmann’s extension, the Hückel method is also well-known as the ‘simple Hückel method’ (SHM). Even though the method is quite simple, the Hückel route in its original form makes chemically useful and qualitatively accurate predictions for numerous common molecular geometries, and therefore, is a very powerful and widely popular educational toolkit. It is also included in textbooks of preliminary quantum chemistry and physical organic chemistry. Furthermore, many organic chemists, in specific, still apply Hückel theory routinely to find back-of-the-envelope, the very approximate profile of \(\pi \)-interactions.
Want to study chemistry for CSIR UGC - NET JRF, IIT-GATE, M.Sc Entrance, IIT-JAM, IIT-JEE, NEET, 11th and 12th

Are you interested in books (Print and Ebook) published by Dalal Institute? READ MORE

Want video lectures in chemistry for CSIR UGC - NET JRF + IIT-GATE; IIT-JAM + M.Sc Entrance; IIT-JEE + NEET + 11th +12th; and all other postgraduate, undergraduate & senior-secondary level examinations where chemistry is a paper? READ MORE

Postgraduate Level

CSIR UGC - NET JRF & IIT-GATE

First Chemistry Batch
(1st January – 31st May)

Second Chemistry Batch
(1st July – 30th November)

Senior-Secondary Level

11TH, 12TH, NEET & IIT-JEE

First Chemistry Batch
(1st April – 31st August)

Second Chemistry Batch
(1st October – 28th February)

Undergraduate Level

M.Sc ENTRANCE & IIT-JAM

First Chemistry Batch
(1st February – 30th June)

Second Chemistry Batch
(1st August – 31st December)

Regular Program
Online Course
Result

Join the revolution by becoming a part of our community and get all of the member benefits like downloading any PDF document for your personal preview.

Sign Up

JOIN THE REVOLUTION FROM BEAST TO BUDDHA

..... India’s Best Coaching Center for Academic and Competitive Chemistry Exams
(CSIR UGC – NET JRF + IIT-GATE; IIT-JAM + M.Sc Entrance; IIT-JEE + NEET + 11th +12th; and all other postgraduate, undergraduate & senior-secondary level examinations where chemistry is a paper)
A TEXTBOOK OF ORGANIC CHEMISTRY

Volume I

MANDEEP DALAL
Table of Contents

CHAPTER 1 ... 11
Nature of Bonding in Organic Molecules .. 11
❖ Delocalized Chemical Bonding .. 11
❖ Conjugation ... 14
❖ Cross Conjugation .. 16
❖ Resonance .. 18
❖ Hyperconjugation .. 27
❖ Tautomerism ... 31
❖ Aromaticity in Benzenoid and Nonbenzenoid Compounds .. 33
❖ Altermant and Non-Altermant Hydrocarbons ... 35
❖ Huckel’s Rule: Energy Level of π-Molecular Orbitals .. 37
❖ Annulenes .. 44
❖ Antiaromaticity ... 46
❖ Homoaromaticity .. 48
❖ PMO Approach ... 50
❖ Bonds Weaker Than Covalent .. 58
❖ Addition Compounds: Crown Ether Complexes and Cryptands, Inclusion Compounds, Cycloextrins ... 65
❖ Catenanes and Rotaxanes ... 75
❖ Problems .. 79
❖ Bibliography ... 80

CHAPTER 2 .. 81
Stereochemistry .. 81
❖ Chirality ... 81
❖ Elements of Symmetry .. 86
❖ Molecules with More Than One Chiral Centre: Diastereomerism .. 90
❖ Determination of Relative and Absolute Configuration (Octant Rule Excluded) with Special Reference to Lactic Acid, Alanine & Mandelic Acid ... 92
❖ Methods of Resolution ... 102
❖ Optical Purity .. 104
❖ Prochirality ... 105
❖ Enantiotopic and Diastereotopic Atoms, Groups and Faces .. 107
❖ Asymmetric Synthesis: Cram’s Rule and Its Modifications, Prelog’s Rule .. 113
❖ Conformational Analysis of Cycloalkanes (Upto Six Membered Rings) ... 116
❖ Decalins .. 122
❖ Conformations of Sugars ... 126
❖ Optical Activity in Absence of Chiral Carbon (Biphenyls, Allenes and Spiranes) 132
❖ Chirality Due to Helical Shape .. 137
❖ Geometrical Isomerism in Alkenes and Oximes .. 140
❖ Methods of Determining the Configuration ... 146
CHAPTER 10

Elimination Reactions

❖ The E₂, E₁ and E₁CB Mechanisms
❖ Orientation of the Double Bond
❖ Reactivity – Effects of Substrate Structures, Attacking Base, the Leaving Group and the Medium
❖ Mechanism and Orientation in Pyrolytic Elimination
❖ Problems
❖ Bibliography

CHAPTER 11

Addition to Carbon-Carbon Multiple Bonds

❖ Mechanistic and Stereochemical Aspects of Addition Reactions Involving Electrophiles, Nucleophiles and Free Radicals
❖ Regio- and Chemoselectivity: Orientation and Reactivity
❖ Addition to Cyclopropane Ring
❖ Hydrogenation of Double and Triple Bonds
❖ Hydrogenation of Aromatic Rings
❖ Hydroboration
❖ Michael Reaction
❖ Sharpless Asymmetric Epoxidation
❖ Problems
❖ Bibliography

CHAPTER 12

Addition to Carbon-Hetero Multiple Bonds

❖ Mechanism of Metal Hydride Reduction of Saturated and Unsaturated Carbonyl Compounds, Acids, Esters and Nitriles
❖ Addition of Grignard Reagents, Organozinc and Organolithium Reagents to Carbonyl and Unsaturated Carbonyl Compounds
❖ Wittig Reaction
❖ Mechanism of Condensation Reactions Involving Enolates: Aldol, Knoevenagel, Claisen, Mannich, Benzoin, Perkin and Stobbe Reactions
❖ Hydrolysis of Esters and Amides
❖ Ammonolysis of Esters
❖ Problems
❖ Bibliography

INDEX
Mandeep Dalal is an Indian research scholar who is primarily working in the field of Science and Philosophy. He received his Ph.D in Chemistry from Maharshi Dayanand University, Rohtak, in 2018. He is also the Founder of "Dalal Institute" (India’s best coaching centre for academic and competitive chemistry exams), the organization that is committed to revolutionize the field of school-level and higher education in Chemistry across the globe. He has published more than 40 research papers in various international scientific journals, including mostly from Elsevier (USA), IOP (UK), and Springer (Netherlands).