CHAPTER 7

Aliphatic Electrophilic Substitution

❖ Bimolecular Mechanisms – SE₂ and SEᵢ

The electrophilic substitution in the aliphatic compounds is just similar to the aliphatic nucleophilic substitution, except for the fact that here an electrophile displaces a functional group rather than an electrophile. In this section, we will discuss the two major types of electrophilic substitutions; SE₂ (substitution electrophilic bimolecular) and SEᵢ (substitution electrophilic internal) mechanisms.

➢ SE₂ (Substitution Electrophilic Bimolecular) Mechanism

The bimolecular electrophilic substitution (SE₂) reactions may simply be defined as the chemical changes where a stronger electrophile displaces a weaker one in an aliphatic substrate.

This mechanism is quite analogous with the SN₂ route excepting the mode of attack. In the SN₂ mechanism, a stronger nucleophile replaces a weaker one via the backside attack due to its inter-cloud repulsion with the leaving group; however, in the SE₂ route, the attacking electrophile may come from the front, as well as from the backside because it is only using its vacant orbital towards substrates causing little to no repulsion. So, the SE₂ mechanism can be divided into SE₂-front and SE₂-back based upon the front and back attacks, respectively.

Illustrative reaction: The general reaction showing both types of electrophilic attacks (with their corresponding products), is shown below.

Mechanism involved: The proposed mechanism for the reaction given above says that the two electrons of the carbon-electrophile bond reside in the central orbital. Ingold proposed that the electronic distribution responsible for different stereochemistry of products is a function of bond-extension’s magnitude and the extent of bond ionicity of the transition state.
It is obvious that the transition state needs to have high ionicity and good bond extension potential for SE$_2$-back reactions so that the carbon’s orbital is sufficiently spread on both ends, resulting in the inverted configuration in the case of a chiral substrate. On the other hand, if there is a very little bond extension and low ionicity in the transition state, the electron-pair of the original bond pretty much retains its position and gives rise to the retention of the configuration, and we get SE$_2$-front case.

Where E$^+$ is the attacking electrophile whereas L$^-$ is the leaving group. Furthermore, it is also worthy to note that organometallic compounds have exceptional susceptibility towards electrophilic substitution.

Salient Features: The main features of the mechanism involved in electrophilic substitution bimolecular or SE$_2$ type reactions are given below.

i) SE$_2$ reactions follow second-order kinetics with the rate law

$$Rate = k[RX][E]$$

Where k is the rate constant. The symbol $[RX]$ and $[E]$ represent the molar concentration of the substrate and attacking electrophile, respectively.

ii) If the substrate is chiral, then the SE$_2$ mechanism can lead to the inversion, as well as, retention of the configuration; depending upon the mode of attack (front or back).

iii) The rate of the substitution becomes independent of the concentration of the attacking electrophile if its concentration is extremely high in comparison to the substrate.

iv) Stereochemical studies can be employed to differentiate between SE$_2$-front and SE$_2$-back.

v) The SE$_2$ reactions are favored by the more polar C–L bond.
SE\textsubscript{i} (Substitution Electrophilic Internal) Mechanism

The internal electrophilic substitution (SE\textsubscript{i}) reactions may simply be defined as the chemical changes where a stronger electrophile displaces a weaker one in an aliphatic substrate by assisting its departure.

This mechanism is also very analogous with the SN\textsubscript{2} route excepting the mode of attack. In the SN\textsubscript{2} mechanism, a stronger nucleophile replaces a weaker one via the backside attack due to its inter-cloud repulsion with the leaving group; however, in the SE\textsubscript{i} route, the attacking electrophile comes from the front and assists the departure of leaving group by forming a bond with it.

Illustrative reaction: The general reaction showing this type of electrophilic attack (with the corresponding product) is shown below.

Mechanism involved: The proposed mechanism for the reaction given above says that the two electrons of the carbon-electrophile bond reside in the central orbital. It is observed that if there is a very little bond extension and low ionicity in the transition state, the electron pair of the original bond pretty much retains its position and gives rise to the retention of the configuration, and we get SE\textsubscript{i} case (like SE\textsubscript{2}-front).

Salient Features: The main features of the mechanism involved in electrophilic substitution internal or SE\textsubscript{i} type reactions are given below.

i) SE\textsubscript{i} reactions follow second-order kinetics with the rate law

\[
Rate = k[RX][EZ]
\]

Where \(k \) is the rate constant. The symbol \([RX]\) and \([EZ]\) represent the molar concentration of the substrate and attacking electrophile, respectively.

ii) Like SE\textsubscript{2}-front, SE\textsubscript{i} reactions result in the retention of the configuration.

iii) The SE\textsubscript{2} reactions are favored by the more polar C–L bond.
The SE₁ Mechanism

The unimolecular electrophilic substitution (SE₁) reactions may simply be defined as the chemical change in which a stronger electrophile displaces a weaker one in an aliphatic substrate via the formation of a carbanion.

This mechanism is quite analogous with the SN₁ route excepting the nature of intermediate. In the SN₁ mechanism, a stronger nucleophile replaces a weaker one via the formation of a carbocation intermediate; however, in the SE₁ route, before the attacking electrophile attack, the intermediate formed after the dissociation of electrofuge is a carbanion.

Illustrative reaction: The general reaction showing this type of electrophilic attack (with its corresponding product) is shown below.

Mechanism involved: The proposed mechanism for the reaction given above involves a three-step route which must be discussed before we give the salient features of the same.

i) Heterolysis in substrate: This is the slowest, and therefore, is the rate-determining step that gives rise to a carbanion.

ii) Electrophilic attack: This is a very fast step and involves the combination of attacking electrophile with the carbanion produced in the previous step.
The stereochemistry of SE$_1$ reactions is quite complicated to rationalize because of the configuration of intermediatory carbanions obtained via the first step of heterolysis. Generally, we consider carbanions planar (sp^2 hybridization) or pyramidal (sp^3 hybridization), or an in-between configuration. As far as the energy is concerned, pyramidal geometry is more advantageous because lone pair will stay in sp^3 hybridized orbital. Furthermore, a pyramidal carbanion can retain its structure in the course of substitution to result in the retention of the final configuration. However, it does not always go this way because a pyramidal carbanion has been shown to result in racemization due to ‘pyramidal inversion’; amines and R$_3$C$^-$ carbanions are typical examples.

![Figure 1. The pyramidal inversion of carbanion.](image)

On the other hand, if the carbanion is of trigonal planar geometry, the electrophile can attack from both sides to give rise to racemized yield. So, we can conclude that racemization is the characteristic feature of the SE$_1$ route. However, it is quite tedious to determine how the racemization actually occurred; via pyramidal inversion or planar carbanions.

Salient Features: The main features of the mechanism involved in electrophilic substitution unimolecular or SE$_1$ type reactions are given below.

i) SE$_2$ reactions follow first-order kinetics with the rate law:

$$Rate = k[RX]$$

Where k is the rate constant. The symbol $[RX]$ represents the molar concentration of the substrate.

ii) If the substrate is chiral, then this always leads to the racemization of the final product.

iii) Unlike SN$_1$-type, SE$_1$ reaction can also occur at bridgehead carbon because the intermediate (carbanion in this case) need not to be planar.

iv) The rate of the substitution increases as the steric bulk around the carbon center decreases.

v) The SE$_2$ reactions are favored by the more polar C–L bond.
Electrophilic Substitution Accompanied by Double Bond Shifts

If the substrate in electrophilic substitution is allylic in nature, the final product may undergo rearrangement, which is quite similar to the allylic rearrangements in nucleophilic substitutions. There are two main routes for this behavior to occur; one is analogous to the SE$_1$ pathway (leaving group is detached first) giving a resonance-stabilized allylic carbanion which attacks the electrophile E, the second one involves the initial attack on E by the π-bond to yield a carbocation which then which loses X forming new alkene unit.

Base-catalyzed Double Bond Migration

The first pathway is the base-catalyzed double bond migration, where an equilibrium mixture of isomers is obtained with stable configuration as the major product. The reaction occurs in two steps, in which the step is the abstraction of a proton by the base to yield a resonance stabilized carbanion, which in turn, is attacked by electrophile (proton in this case) to give rise to a more stable species. The typical reaction portraying mechanism is given below.

\[
\begin{align*}
\text{RCH} = \text{CCH}_2 & \quad + \text{B}^- \\
\text{H}_2 & \quad - \text{BH} \\
& \quad \text{RCH} = \text{CCH}_2
\end{align*}
\]

It is also worthy to note that terminal and non-conjugated alkenes can easily be converted into internal and conjugated olefins using this route, proving its significance in synthetic organic chemistry.

Acid-catalyzed Double Bond Migration

The second pathway is the acid-catalyzed double bond migration, where an equilibrium mixture of isomers is obtained with a stable configuration as the major product. The reaction initiates with the attack of E on the π-bond to yield a carbocation which then loses L forming a new alkene unit. The typical reaction portraying mechanism is given below.

\[
\begin{align*}
\text{RCH} = \text{CCH}_2 & \quad + \text{H}^+ \\
& \quad \text{RCH} = \text{CCH}_3
\end{align*}
\]

Just like base-catalyzed double bond migration, this route can also be used to convert terminal and non-conjugated alkenes into internal and conjugated olefins.
Effect of Substrates, Leaving Group and the Solvent Polarity on the Reactivity

The reactivity of aliphatic electrophilic substitution reactions is affected by many factors that can be better understood via experimental data and theoretical treatment combined. In this section, we will discuss some major factors that greatly influence the electrophilic substitution’s rate in aliphatic compounds like substrate structure, leaving group and reaction medium.

Effect of Substrate Structure

The electron-donating groups of the substrate decrease the rate of SE$_1$ reactions whereas electron-withdrawing groups show an opposite trend. This declining rate in the SE$_1$ pathway with electron-donating groups is quite normal for a reaction-type where the proton’s dissociation is the rate-determining step (like in the case of acidic character). Jensen and Davis proved that the reactivity of alkyl groups is similar in SE$_2$-back as that for the SN$_2$ pathway, which can be attributed to the backside attack and steric hindrance, simultaneously.

\[
\text{H}-\text{C}-\text{H} > \text{H}-\text{C}-\text{CH}_3 > \text{CH}_3\text{C}-\text{CH}_3
\]

Reactivity of alkyl groups for SE$_2$-back pathway

Furthermore, it has also been observed that the rate of front-mode electrophilic substitution in aliphatic compounds increases as the branching in the substrate increases increased, which can be attributed to the electron-releasing effect of the alkyl groups that makes the electron-deficient transition state more stable. However, it is also worthy to note that β-branching will reduce the substitution rate in SE$_2$-front because of the steric hindrance.

Effect of Leaving Group

The ease of electrophuge’s detachment in both types (SE$_1$ and SE$_2$) increases with the increasing polarity of the C−X bond. Nevertheless, if the leaving group is metallic in nature and metal has a valence greater than one, then any group attached to the metal center will affect its electrophugal ability. For instance, consider the case of Me$_3$C−Hg−W (organomercurials) where the rate of reaction has decreased. The reason lies in the fact that although Hg and W have less electronegativity than carbon (which is why the C−Hg bond is polar), the C−Hg bond becomes less polar due to the higher electronegativity W than Hg. In other words, carbon will have a lower negative charge in the C−Hg bond when W is attached to Hg because tungsten will support Hg to hold the shared pair more firmly. Therefore, −HgMe will be a better leaving group than −HgCl.

\[
\text{Hg}−\text{t-Bu} > \text{Hg}−\text{i-Pr} > \text{HgEt} > \text{HgMe}
\]

Leaving-group order

Furthermore, it is also worthy to note that carbon-based leaving groups support the SE$_1$ mechanism, whereas SE$_2$ or SE$_i$ mechanisms are favored by metal-based leaving groups.
➢ *Effect of Solvent Polarity*

Just like the case of aliphatic nucleophilic substitution reactions, the raise in solvent polarity boosts the chances of the SE$_1$ pathway by supporting the ionization because of the better solvation of carbanions. However, if SE$_2$ and SE$_1$ reactions are competing with each other in parallel propagation, then less polar solvents favor the SE$_2$ pathway and polar solvents favor the SE$_1$ mechanism. Finally, if the nucleophilic character of the solvent is very small, the electrophile with properly placed assisting functionality might support the reaction; and therefore, motivating the reaction towards the SE$_1$ pathway; otherwise, solvent polarity has little to no effect upon SN$_1$ reactions.
❖ Problems

Q 1. Define electrophilic substitution reactions.
Q 2. What is the fundamental difference between SE₂ and SE₁ mechanisms?
Q 3. Discuss the step-to-step mechanism of SE₁ reactions.
Q 4. How can electrophilic substitution occur via double bond shift?
Q 5. Discuss the effect of substrate structure and leaving group on the reactivity of electrophilic substitution in aliphatic compounds.
Q 6. How does the nature of nucleophiles affect the rate of aliphatic electrophilic substitution?
Q 7. Write down a short note on the solvent polarity’s effect on electrophilic substitution reactions in aliphatic systems.
CHAPTER 7: Aliphatic Electrophilic Substitution

❖ Bibliography

Want to study chemistry for CSIR UGC - NET JRF, IIT-GATE, M.Sc Entrance, IIT-JAM, IIT-JEE, NEET, 11th and 12th?

Want video lectures in chemistry for CSIR UGC - NET JRF + IIT-GATE; IIT-JAM + M.Sc Entrance; IIT-JEE + NEET + 11th +12th; and all other postgraduate, undergraduate & senior-secondary level examinations where chemistry is a paper?

Want to study chemistry for CSIR UGC - NET JRF + IIT-GATE; IIT-JAM + M.Sc Entrance; IIT-JEE + NEET + 11th +12th; and all other postgraduate, undergraduate & senior-secondary level examinations where chemistry is a paper?

Join the revolution by becoming a part of our community and get all of the member benefits like downloading any PDF document for your personal preview.

Sign Up

Main Market, Sector 14, Rohtak, Haryana 124001, India
(+91-9802825820, info@dalalinstitute.com)
www.dalalinstitute.com
Table of Contents

CHAPTER 1 ... 11

Nature of Bonding in Organic Molecules .. 11
- Delocalized Chemical Bonding .. 11
- Conjugation .. 14
- Cross Conjugation .. 16
- Resonance .. 18
- Hyperconjugation .. 27
- Tautomerism ... 31
- Aromaticity in Benzenoid and Nonbenzenoid Compounds .. 33
- Alternant and Non-Alternant Hydrocarbons ... 35
- Huckel’s Rule: Energy Level of π-Molecular Orbitals ... 37
- Annulenes .. 44
- Antiaromaticity .. 46
- Homoaromaticity .. 48
- PMO Approach ... 50
- Bonds Weaker Than Covalent ... 58
- Addition Compounds: Crown Ether Complexes and Cryptands, Inclusion Compounds, Cycloextrins ... 65
- Catenanes and Rotaxanes ... 75
- Problems ... 79
- Bibliography ... 80

CHAPTER 2 ... 81

Stereochemistry ... 81
- Chirality .. 81
- Elements of Symmetry .. 86
- Molecules with More Than One Chiral Centre: Diastereomerism .. 90
- Determination of Relative and Absolute Configuration (Octant Rule Excluded) with Special Reference to Lactic Acid, Alanine & Mandelic Acid .. 92
- Methods of Resolution .. 102
- Optical Purity ... 104
- Prochirality ... 105
- Enantiotopic and Diastereotropic Atoms, Groups and Faces ... 107
- Asymmetric Synthesis: Cram’s Rule and Its Modifications, Prelog’s Rule 113
- Conformational Analysis of Cycloalkanes (Upto Six Membered Rings) 116
- Decalins ... 122
- Conformations of Sugars .. 126
- Optical Activity in Absence of Chiral Carbon (Biphenyls, Allenes and Spiranes) 132
- Chirality Due to Helical Shape ... 137
- Geometrical Isomerism in Alkenes and Oximes ... 140
- Methods of Determining the Configuration .. 146
CHAPTER 3 ... 153

Reaction Mechanism: Structure and Reactivity ... 153
❖ Problems .. 154
❖ Bibliography .. 155

CHAPTER 4 ... 221

Carbohydrates .. 221
❖ Types of Naturally Occurring Sugars ... 222
❖ Deoxy Sugars ... 227
❖ Amino Sugars .. 229
❖ Branch Chain Sugars ... 230
❖ General Methods of Determination of Structure and Ring Size of Sugars with Particular Reference to Maltose, Lactose, Sucrose, Starch and Cellulose .. 231
❖ Problems ... 234
❖ Bibliography .. 240

CHAPTER 5 ... 241

Natural and Synthetic Dyes .. 241
❖ Various Classes of Synthetic Dyes Including Heterocyclic Dyes ... 241
❖ Interaction Between Dyes and Fibers .. 245
❖ Structure Elucidation of Indigo and Alizarin .. 247
❖ Problems ... 248
❖ Bibliography .. 253

CHAPTER 6 ... 254

Aliphatic Nucleophilic Substitution ... 254
❖ The SN₂, SN₁, Mixed SN₁ and SN₂, SNᵢ, SNᵢ’, SNᵢ’’, SNᵢ’’’ and SET Mechanisms 254
The Neighbouring Group Mechanisms... 263
Neighbouring Group Participation by π and σ Bonds ... 265
Anchimeric Assistance .. 269
Classical and Nonclassical Carbocations .. 272
Phenonium Ions .. 283
Common Carbocation Rearrangements .. 284
Applications of NMR Spectroscopy in the Detection of Carbocations 286
Reactivity – Effects of Substrate Structure, Attacking Nucleophile, Leaving Group and Reaction Medium .. 288
Ambident Nucleophiles and Regioselectivity .. 294
Phase Transfer Catalysis ... 297
Problems ... 300
Bibliography .. 301

CHAPTER 7 ... 302
Aliphatic Electrophilic Substitution ... 302
Bimolecular Mechanisms – SE₂ and SEᵢ ... 302
The SEᵢ Mechanism ... 305
Electrophilic Substitution Accompanied by Double Bond Shifts ... 307
Effect of Substrates, Leaving Group and the Solvent Polarity on the Reactivity 308
Problems ... 310
Bibliography .. 311

CHAPTER 8 ... 312
Aromatic Electrophilic Substitution ... 312
The Arenium Ion Mechanism ... 312
Orientation and Reactivity .. 314
Energy Profile Diagrams .. 316
The Ortho/Para Ratio .. 317
ipso-Attack ... 319
Orientation in Other Ring Systems ... 320
Quantitative Treatment of Reactivity in Substrates and Electrophiles 321
Diazonium Coupling ... 325
Vilsmeier Reaction ... 326
Gattermann-Koch Reaction .. 327
Problems ... 329
Bibliography .. 330

CHAPTER 9 ... 331
Aromatic Nucleophilic Substitution ... 331
The ArSN₁, ArSN₂, Benzyne and SᵣN₁ Mechanisms ... 331
Reactivity – Effect of Substrate Structure, Leaving Group and Attacking Nucleophile 336
The von Richter, Sommelet-Hauser, and Smiles Rearrangements ... 339
Problems ... 343
Bibliography .. 344
Mandeep Dalal is an Indian research scholar who is primarily working in the field of Science and Philosophy. He received his Ph.D in Chemistry from Maharshi Dayanand University, Rohtak, in 2018. He is also the Founder of "Dalal Institute" (India's best coaching centre for academic and competitive chemistry exams), the organization that is committed to revolutionize the field of school-level and higher education in Chemistry across the globe. He has published more than 40 research papers in various international scientific journals, including mostly from Elsevier (USA), IOP (UK), and Springer (Netherlands).

Other Books by the Author

A TEXTBOOK OF INORGANIC CHEMISTRY - VOLUME I, II, III, IV

A TEXTBOOK OF PHYSICAL CHEMISTRY - VOLUME I, II, III, IV

A TEXTBOOK OF ORGANIC CHEMISTRY - VOLUME I, II, III, IV

DALAL INSTITUTE

..... Chemical Science Demystified
Main Market, Sector 14, Rohtak, Haryana 124001, India
(info@dalal institute.com, +91-9802825820)
www.dalal institute.com

978-81-952427-3-3
MRP: Rs 800.00