An aromatic nucleophilic substitution in organic chemistry may simply be defined as a chemical reaction where the nucleophile displaces a good leaving group, such as a halide, on an aromatic ring. The aromatic nucleophilic substitution can primarily occur via three different routes as given below.

ArSN₁ or Aryl Cation Mechanism

The unimolecular nucleophilic substitution on aromatic rings is mainly given by aromatic diazonium salts. The typical reaction of such type is given below.

Illustrative reaction: The typical reaction involving nucleophilic substitution in aromatic compounds is shown below.

\[
\text{N}_2^+ + \text{Nu}^- \rightarrow \text{Nu} + \text{N}_2
\]

Mechanism involved: The proposed mechanism for the reaction given above involves two steps which must be discussed before we give salient features of the same.

1. **Formation of aryl cation:** Now although the aryl carbocation is highly unstable, its formation is still favored due to the high stability of dinitrogen (i.e., good leaving group).

\[
\text{N}_2^+ \rightarrow \text{Nu}^+ + \text{N}_2
\]

Now although the aryl carbocation is highly unstable, its formation is still favored due to the high stability of dinitrogen (i.e., good leaving group).

2. **Attack by the Nucleophile:**
Salient Features: The main features of the mechanism involved in aromatic nucleophilic substitution unimolecular or ArSN₁ type reactions are given below.

i) ArSN₁ reactions follow first-order kinetics with the rate law

\[\text{Rate} = k[RX] \]

Where \(k \) is the rate constant and \([RX]\) represents the molar concentration of the substrate.

ii) The presence of +R groups at ortho and para positions raises the reactivity of the substrate and vice-versa.

➢ ArSN₂ or Addition-Elimination Mechanism

The bimolecular nucleophilic substitution on aromatic rings is most common among the class. The typical reaction of such type is given below.

Illustrative reaction: The typical reaction involving this type of mechanism is given below.

Mechanism involved: The proposed mechanism for the reaction given above involves two steps which must be discussed before we give salient features of the same.

i) ipso-addition of the nucleophile:

Now although an ion is no longer an aromatic species; however, it is relatively stable due to the delocalization of the negative charge over 3 carbon atoms by the pi system.

ii) Elimination of the leaving group:
Salient Features: The main features of the mechanism involved in aromatic nucleophilic substitution bimolecular or ArSN$_2$ type reactions are given below.

1. ArSN$_2$ reactions follow second-order kinetics with the rate law
 $$\text{Rate} = k[RX][Nu]$$
 Where k is the rate constant. The symbol $[RX]$ and $[Nu]$ represent the molar concentration of the substrate and attacking nucleophiles, respectively.

2. The reactivity increases as the leaving group gets better.

3. The rate of the substitution increases as the $-I$ or $-R$ effect of the groups attached o- and p-positions increases.

4. The reactivity is also proportional to the electronegativity of the heteroatom (if any) in the ring.

5. The ArSN$_2$ reactions are favored in polar aprotic solvents.

Aryne (Benzyne) or Elimination-Addition Mechanism

The elimination-addition mechanism involves a highly unstable intermediate called benzyne (dehydrobenzene). A typical reaction of such type is given below.

Illustrative reaction:

Steps involved: The proposed mechanism for the reaction given above involves two steps which must be discussed before we give salient features of the same.

1. First step is the elimination of proton ortho to the substituent present and formation of benzyne:

 ![Cl](image1)

 ![NH$_3$, Cl$^-$](image2)

2. Attack of amide ion on the benzyne intermediate:
iii) Abstraction of the proton from ammonia:

Salient Features: The main features of the mechanism involved in aromatic nucleophilic substitution via benzyne are given below.

i) At least one hydrogen must be present at ortho position in the inactivated aryl halide.

ii) The incoming group may or may not occupy the position vacated by the leaving group i.e. cine substitution.

Substitution Radical Nucleophilic Unimolecular (S$_{RN1}$)

Radical-nucleophilic aromatic substitution or S_{RN1} in organic chemistry is a type of substitution reaction in which a certain substituent on an aromatic compound is replaced by a nucleophile through an intermediary free radical species.

Illustrative reaction:

Mechanism involved: The proposed mechanism for the reaction given above involves two steps which must be discussed before we give salient features of the same.

i) Formation of radical anion: The aryl halide accepts an electron from a radical initiator to form a radical anion.

ii) Transformation of radical anion into aryl radical:
iii) Attack of the nucleophile on the aryl radical:

iv) Transfer of electron to new aryl halide:

Salient Features: The main features of the mechanism involved in S_{RN1} (substitution radical nucleophilic unimolecular) type reactions are given below.

i) S_{RN1} reactions follow first-order kinetics with the rate law

$$Rate = k[RX]$$

Where k is the rate constant and $[RX]$ represents the molar concentration of the substrate.

ii) The phenyl radical can also abstract any loose proton to form arene in a chain termination reaction to yield the final product.
LEGAL NOTICE
This document is an excerpt from the book entitled “A Textbook of Organic Chemistry – Volume 1 by Mandeep Dalal”, and is the intellectual property of the Author/Publisher. The content of this document is protected by international copyright law and is valid only for the personal preview of the user who has originally downloaded it from the publisher’s website (www.dalal institute.com). Any act of copying (including plagiarizing its language) or sharing this document will result in severe civil and criminal prosecution to the maximum extent possible under law.

This is a low resolution version only for preview purpose. If you want to read the full book, please consider buying.

Buy the complete book with TOC navigation, high resolution images and no watermark.
Want to study chemistry for CSIR UGC – NET JRF, IIT-GATE, M.Sc Entrance, IIT-JAM, IIT-JEE, NEET, 11th and 12th?

Want to study chemistry for CSIR UGC – NET JRF + IIT-GATE; IIT-JAM + M.Sc Entrance; IIT-JEE + NEET + 11th +12th; and all other postgraduate, undergraduate & senior-secondary level examinations where chemistry is a paper?

Want video lectures in chemistry for CSIR UGC – NET JRF + IIT-GATE; IIT-JAM + M.Sc Entrance; IIT-JEE + NEET + 11th +12th; and all other postgraduate, undergraduate & senior-secondary level examinations where chemistry is a paper?

Join the revolution by becoming a part of our community and get all of the member benefits like downloading any PDF document for your personal preview.

Sign Up
Table of Contents

CHAPTER 1 ... 11
Nature of Bonding in Organic Molecules .. 11
 ❖ Delocalized Chemical Bonding ... 11
 ❖ Conjugation ... 14
 ❖ Cross Conjugation .. 16
 ❖ Resonance .. 18
 ❖ Hyperconjugation .. 27
 ❖ Tautomerism .. 31
 ❖ Aromaticity in Benzenoid and Nonbenzenoid Compounds .. 33
 ❖ Alternant and Non-Alternant Hydrocarbons .. 35
 ❖ Huckel’s Rule: Energy Level of \(\pi \)-Molecular Orbitals .. 37
 ❖ Annulenes .. 44
 ❖ Antiaromaticity ... 46
 ❖ Homoaromaticity ..~~~~~ 48
 ❖ PMO Approach .. 50
 ❖ Bonds Weaker Than Covalent .. 58
 ❖ Addition Compounds: Crown Ether Complexes and Cryptands, Inclusion Compounds, Cycloextrins .. 65
 ❖ Catenanes and Rotaxanes .. 75
 ❖ Problems .. 79
 ❖ Bibliography .. 80

CHAPTER 2 ... 81
Stereochemistry .. 81
 ❖ Chirality ... 81
 ❖ Elements of Symmetry ... 86
 ❖ Molecules with More Than One Chiral Centre: Diastereomerism .. 90
 ❖ Determination of Relative and Absolute Configuration (Octant Rule Excluded) with Special Reference to Lactic Acid, Alanine & Mandelic Acid ... 92
 ❖ Methods of Resolution ... 102
 ❖ Optical Purity .. 104
 ❖ Prochirality ... 105
 ❖ Enantiotopic and Diastereotopic Atoms, Groups and Faces .. 107
 ❖ Asymmetric Synthesis: Cram’s Rule and Its Modifications, Prelog’s Rule .. 113
 ❖ Conformational Analysis of Cycloalkanes (Upto Six Membered Rings) ... 116
 ❖ Decalins ... 122
 ❖ Conformations of Sugars .. 126
 ❖ Optical Activity in Absence of Chiral Carbon (Biphenyls, Allenes and Spiranes) 132
 ❖ Chirality Due to Helical Shape ... 137
 ❖ Geometrical Isomerism in Alkenes and Oximes ... 140
 ❖ Methods of Determining the Configuration .. 146
CHAPTER 3

Reaction Mechanism: Structure and Reactivity

- Types of Mechanisms
- Types of Reactions
- Thermodynamic and Kinetic Requirements
- Kinetic and Thermodynamic Control
- Hammond’s Postulate
- Curtin-Hammett Principle
- Potential Energy Diagrams: Transition States and Intermediates
- Methods of Determining Mechanisms
- Isotope Effects
- Hard and Soft Acids and Bases
- Generation, Structure, Stability and Reactivity of Carbocations, Carbanions, Free Radicals, Carbenes and Nitrenes
- Effect of Structure on Reactivity
- The Hammett Equation and Linear Free Energy Relationship
- Substituent and Reaction Constants
- Taft Equation
- Problems

CHAPTER 4

Carbohydrates

- Types of Naturally Occurring Sugars
- Deoxy Sugars
- Amino Sugars
- Branch Chain Sugars
- General Methods of Determination of Structure and Ring Size of Sugars with Particular Reference to Maltose, Lactose, Sucrose, Starch and Cellulose
- Problems

CHAPTER 5

Natural and Synthetic Dyes

- Various Classes of Synthetic Dyes Including Heterocyclic Dyes
- Interaction Between Dyes and Fibers
- Structure Elucidation of Indigo and Alizarin
- Problems

CHAPTER 6

Aliphatic Nucleophilic Substitution

- The SN₂, SN₁, Mixed SN₁ and SN₂, SN₀, SN₁′, SN₂′, SN₀′ and SET Mechanisms
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Aliphatic Electrophilic Substitution</td>
</tr>
<tr>
<td>8</td>
<td>Aromatic Electrophilic Substitution</td>
</tr>
<tr>
<td>9</td>
<td>Aromatic Nucleophilic Substitution</td>
</tr>
</tbody>
</table>

- The Neighbouring Group Mechanisms ... 263
- Neighbouring Group Participation by π and σ Bonds 265
- Anchimeric Assistance .. 269
- Classical and Nonclassical Carbocations ... 272
- Phenonium Ions ... 283
- Common Carbocation Rearrangements ... 284
- Applications of NMR Spectroscopy in the Detection of Carbocations 286
- Reactivity – Effect of Substrate Structure, Attacking Nucleophile, Leaving Group and Reaction Medium ... 288
- Ambident Nucleophiles and Regioselectivity ... 294
- Phase Transfer Catalysis ... 297
- Problems ... 300
- Bibliography .. 301

- Bimolecular Mechanisms – SE$_2$ and SE$_i$... 302
- The SE$_3$ Mechanism .. 305
- Electrophilic Substitution Accompanied by Double Bond Shifts 307
- Effect of Substrates, Leaving Group and the Solvent Polarity on the Reactivity 308
- Problems ... 310
- Bibliography .. 311

- The Arenium Ion Mechanism ... 312
- Orientation and Reactivity ... 314
- Energy Profile Diagrams ... 316
- The Ortho/Para Ratio .. 317
- ipso-Attack ... 319
- Orientation in Other Ring Systems .. 320
- Quantitative Treatment of Reactivity in Substrates and Electrophiles 321
- Diazonium Coupling ... 325
- Vilsmeier Reaction .. 326
- Gattermann-Koch Reaction .. 327
- Problems ... 329
- Bibliography .. 330

- The ArSN$_1$, ArSN$_2$, Benzyne and SR$_N$$_1$ Mechanisms 331
- Reactivity – Effect of Substrate Structure, Leaving Group and Attacking Nucleophile 336
- The von Richter, Sommelet-Hauser, and Smiles Rearrangements 339
- Problems ... 343
- Bibliography .. 344
Mandeep Dalal is an Indian research scholar who is primarily working in the field of Science and Philosophy. He received his Ph.D in Chemistry from Maharshi Dayanand University, Rohtak, in 2018. He is also the Founder of "Dalal Institute" (India's best coaching centre for academic and competitive chemistry exams), the organization that is committed to revolutionize the field of school-level and higher education in Chemistry across the globe. He has published more than 40 research papers in various international scientific journals, including mostly from Elsevier (USA), IOP (UK), and Springer (Netherlands).

Other Books by the Author

A Textbook of Inorganic Chemistry - Volume I, II, III, IV
A Textbook of Physical Chemistry - Volume I, II, III, IV

Dalal Institute

..... Chemical Science Demystified
Main Market, Sector 14, Rohtak, Haryana 124001, India
(info@dalalinstitute.com, +91-9802825820)
www.dalalinstitute.com