CHAPTER 1

Quantum Mechanics – I

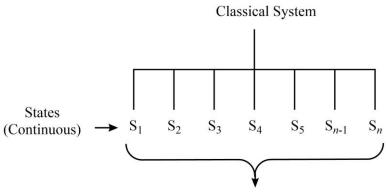
* Postulates of Quantum Mechanics

In modern quantum theory, the postulates of quantum mechanics are simply the step-to-step procedure to solve a simple quantum mechanical problem. In other words, it is like the manual that must be followed to retrieve the information about various states of any quantum mechanical system. We will first learn about the nature and the significance of these postulates, and then we will apply them to some real problems like the particle in a one-dimensional box or the harmonic oscillator.

> The First Postulate

All time-independent states of any quantum mechanical system can be described mathematically as long as the function used is single-valued, continuous and finite.

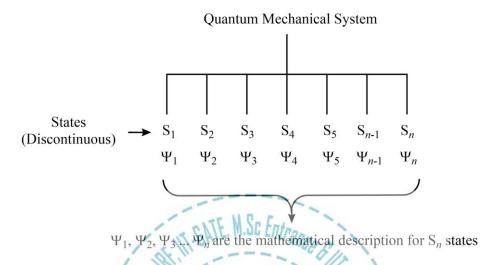
Explanation: The systems around us can be broadly classified into two categories; the first is classical and the other one as quantum mechanical. The classical systems simply refer to the systems which are governed by the classical or the Newtonian mechanics. Now because all the macroscopic objects follow Newton's laws of motion, they fall in the category of classical systems; for example, a rotating gym dumbbell, the vibrating spring of steel, or an athlete running in the playground. Every classical system can possess many states which belong to a continuous domain, and each state can be described mathematically.



Can be described mathematically

However, if the rotating gym dumbbell is replaced by the rotating diatomic molecule, the system would not remain classical anymore and would start violating classical laws. The states of such microscopic systems (here it just means the extremely small) belong to a discontinuous domain and can also be described mathematically. These mathematical descriptions are labeled as $\psi_1, \psi_2, \psi_3 \dots, \psi_n$ and generally called as the "wave functions". The term "wave function" is used because as we go from the macroscopic to the microscopic world i.e. from classical to the quantum mechanical world, things start behaving like waves rather particle. All of the states are wave-like; and because every wave we see around us is continuous, single-valued and finite;

only continuous, single-valued and finite expressions can represent those states. For instance, when you drop a stone in a standstill pond, the waves are generated which travel from the center to the boundary of the pond; and you don't see any discontinuity in it.



Hence, if a function is not single-valued, continuous and finite; it will not be able to represent any wave-like behavior at all. That is why every function that correlates a quantum mechanical state must be single-valued, continuous and finite; and this function describes the corresponding state completely.

The Second Postulate @dalalinstitute.com, +91-9802825820)

For every physical property like linear momentum or the kinetic energy, a particular operator exists in quantum mechanics, the nature of which depends upon the classical expression of the same property.

Explanation: In classical mechanics, there are simply straight forward formulas for all physical properties; like linear momentum can simply be calculated by multiplying the mass with velocity. However, in case of quantum mechanical systems, the value of a certain physical property for a particular state cannot be calculated simply by using its classical formula but from an operator. It does sound silly but the classical formulas which are so well-tested on the scale of time fail in quantum world. For instance, you can use the $mv^2/2$ to calculate the kinetic energy of a moving particle in classical world by just putting its mass and velocity; but if the mass of the moving particle is extremely less, you will not get any rational results.

It is also worthy to note it again that though the classical formulas fail to give the value of physical property, they are still important as they form the basis of the derivations for corresponding quantum mechanical operators. For instance, the operator for kinetic energy (T) along *x*-axis can be derived as:

$$K.E.(T) = \frac{1}{2}mv^2 = \frac{(mv)^2}{2m} = \frac{p^2}{2m}$$
(1)

Where *m* and *v* are mass and the velocity, respectively; and *p* represents the angular momentum whose squared operator is:

$$\hat{p}_x^2 = \frac{-h^2}{4\pi^2} \frac{\partial^2}{\partial x^2} \tag{2}$$

Now putting the value of momentum squared from equation (2) into equation (1), we get:

$$\widehat{T}_x = \frac{-h^2}{8\pi^2 m} \frac{\partial^2}{\partial x^2} \tag{3}$$

The expressions of various quantum mechanical operators are given below.

Table 1. Various important physical properties and their corresponding quantum mechanical operators.

Physi	cal property	Op	perator
Name	Symbol	Symbol	Operation
Position	X III NC	- Â	Multiplication by <i>x</i>
Position squared	r211-GAIL, M.D	Contrance \hat{x}^2	Multiplication by x^2
Momentum	Рх СНЕМІ	STRY \hat{p}_x	$\frac{h}{2\pi i}\frac{\partial}{\partial x}$
Momentum squared	DALAL IN	STIP m, +91-980282582	$\frac{-h^2}{4\pi^2}\frac{\partial^2}{\partial x^2}$
Kinetic energy		stitute.cî _x m	$-h^2 \partial^2$
Potential energy	2m V(x) SINCE	2012	$\frac{1}{8\pi^2 m \partial x^2}$ Multiplication by $V(x)$
Total energy	E = T + V(x)	14, Rohtall Ĥ	$\frac{-h^2}{8\pi^2 m}\frac{\partial^2}{\partial x^2} + V(x)$

For three dimensional systems, the total operator can be obtained by summing the individual operators along three different axes. For instance, some important three-dimensional operators are:

$$\hat{T} = \frac{-h^2}{8\pi^2 m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right)$$
(4)

$$\widehat{p} = \frac{h}{2\pi i} \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z} \right)$$
(5)

$$\widehat{H} = \frac{-h^2}{8\pi^2 m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) + V(x, y, z)$$
(6)

> The Third Postulate

If ψ is a well-behaved function for the given state of system and \hat{A} is a suitable operator for a particular physical property, then the operation on ψ by the operator \hat{A} gives the function ψ multiplied by the value of the physical property which can be constant or variable but always real (R). Mathematically, it can be shown as:

$$\hat{A}\psi = R\psi \tag{7}$$

Explanation: The third postulate of quantum mechanics actually connects the first and second postulate of quantum mechanics. The first postulate talks about the possibility of describing a quantum mechanical state mathematically, while the second postulate says that the values of all physical properties in the quantum world are obtained by the operator rather than the simple classical formula. Now the third postulate says that if we operate the operator (from second postulate) over the wave function (from first postulate), we will get the value of the corresponding physical property.

However, at this point, a new problem arises as we do not know the exact mathematical description i.e. the wave function of any quantum mechanical state; and the operators need the absolute mathematical description of the quantum mechanical state to yield any actual result. Now though we know the expressions of different operators proposed by the second postulate; the first postulate speaks only about the presence of a single-valued, continuous and finite mathematical function but does not give actual function itself; and without the knowledge of actual "wave functions", the operators are pretty much useless. Therefore, one would think that there must be some route by which the wave functions are obtained first, which would be used as operand afterward. However, the procedure to find the exact mathematical descriptions of various quantum mechanical states is somewhat more synergistic. The "magic mystery" is that all the operators need absolute expression of the wave function that defines the quantum mechanical state except one; the most famous "Hamiltonian operator". The special thing about the Hamiltonian operator is that it does not necessarily need the absolute form but the symbolic form only to yield the value of its physical property i.e. energy. Nevertheless, in the process of applying the Hamiltonian operator over the symbolic form of the wave function, the absolute expression is also obtained. Mathematically,

$$\widehat{H}\psi = E\psi \tag{8}$$

After putting the expression of the Hamiltonian operator in equation (8) and then rearranging, we get:

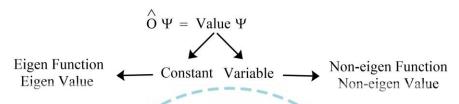
$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} + \frac{8\pi^2 m(E-V)\psi}{h^2} = 0$$
⁽⁹⁾

The second-order differential equation i.e. equation (9) is the famous Schrodinger wave equation, the solution of which gives not only the energy but the wave function as well. Now, once the exact expression of the wave function representing a particular state is known, other operators can be operated over it to find their values.

> The Fourth Postulate

If the value of the physical property obtained after multiplying the wave function by the corresponding operator is constant (postulate 3), the value is called as the eigen-value and is directly reportable; and the wave function will be labeled as the eigen-function of the operator used.

Explanation: The third postulate said that when the wave function of a particular quantum mechanical state is multiplied by the operator of an observable quantity, we get a real value multiplied by the wave function itself; however, the value obtained so can be constant or variable. Mathematically,



The constant value of the observable quantity can be reported directly, and the function is called the eigenfunction of the operator under consideration.

CHEMISTRY

> The Fifth Postulate

If the value of the physical property obtained after multiplying the wave function by the corresponding operator is variable i.e. non-eigen, the value can be reported only after averaging it over the whole configurational space. (10)

Explanation: As we have seen in the fourth postulate that the value obtained by multiplying the Hermitian operator with any quantum mechanical state can also be variable in nature. For instance, if we multiply a wave function simply by position operator, we will get

$$\hat{x}\psi = x\psi \tag{11}$$

or

$$\hat{x} = \frac{x\psi}{\psi} \tag{12}$$

Now because "x" is a variable number, it must have reported as an average value before any further rational argument is made.

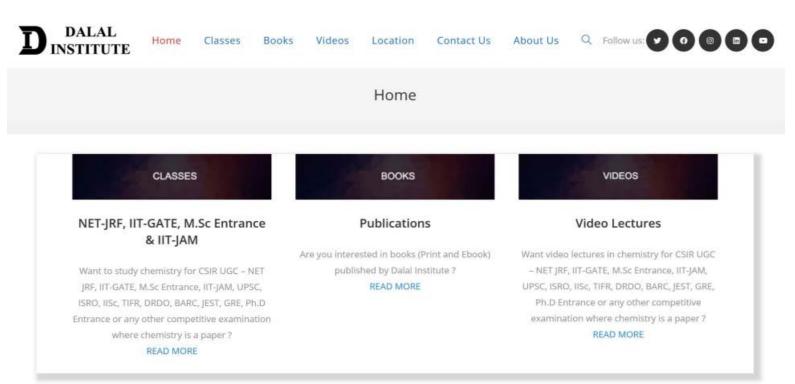
Therefore, we can say that the fifth postulate is simply an extension of the fourth postulate; i.e. the fourth postulate is used to obtain the value of a particular physical property if it is an eigenvalue, however, the fifth postulate is employed to calculate all non-eigenvalues.

LEGAL NOTICE

This document is an excerpt from the book entitled "A Textbook of Physical Chemistry – Volume 1 by Mandeep Dalal", and is the intellectual property of the Author/Publisher. The content of this document is protected by international copyright law and is valid only for the personal preview of the user who has originally downloaded it from the publisher's website (www.dalalinstitute.com). Any act of copying (including plagiarizing its language) or sharing this document will result in severe civil and criminal prosecution to the maximum extent possible under law.

This is a low resolution version only for preview purpose. If you want to read the full book, please consider buying.

Buy the complete book with TOC navigation, high resolution images and no watermark.



Home: https://www.dalalinstitute.com/ Classes: https://www.dalalinstitute.com/classes/ Books: https://www.dalalinstitute.com/books/ Videos: https://www.dalalinstitute.com/videos/ Location: https://www.dalalinstitute.com/location/ Contact Us: https://www.dalalinstitute.com/contact-us/ About Us: https://www.dalalinstitute.com/about-us/

Postgraduate Level Classes		Undergraduate Level Classes	
(NET-JRF & IIT-GATE)		(M.Sc Entrance & IIT-JAM)	
Admission		Admission	
Regular Program Test Series	Distance Learning Result	Regular Program Test Series	Distance Learning Result

A Textbook of Physical Chemistry - Volume 1

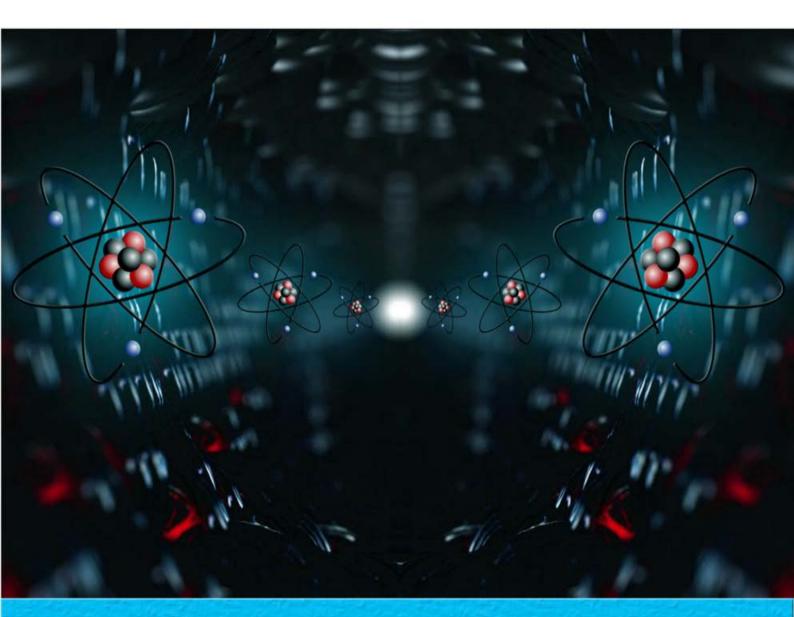
"A Textbook of Physical Chemistry – Volume 1 by Mandeep Dalal" is now available globally; including India, America and most of the European continent. Please ask at your local bookshop or get it online here. READ MORE

Join the revolution by becoming a part of our community and get all of the member benefits like downloading any PDF document for your personal preview.

Sign Up

A TEXTBOOK OF PHYSICAL CHEMISTRY Volume I

MANDEEP DALAL



First Edition

DALAL INSTITUTE

Table of Contents

CHAP	TER 1	11
Qua	ntum Mechanics – I	11
*	Postulates of Quantum Mechanics	11
*	Derivation of Schrodinger Wave Equation	16
*	Max-Born Interpretation of Wave Functions	21
*	The Heisenberg's Uncertainty Principle	24
*	Quantum Mechanical Operators and Their Commutation Relations	29
*	Hermitian Operators – Elementary Ideas, Quantum Mechanical Operator for Linear Momentu Angular Momentum and Energy as Hermitian Operator	
*	The Average Value of the Square of Hermitian Operators	62
*	Commuting Operators and Uncertainty Principle (<i>x</i> & <i>p</i> ; <i>E</i> & <i>t</i>)	63
*	Schrodinger Wave Equation for a Particle in One Dimensional Box	
*	Evaluation of Average Position, Average Momentum and Determination of Uncertainty in Positi and Momentum and Hence Heisenberg's Uncertainty Principle	
*	Pictorial Representation of the Wave Equation of a Particle in One Dimensional Box and Influence on the Kinetic Energy of the Particle in Each Successive Quantum Level	Its
*	Lowest Energy of the Particle	80
*	Problems	82
*	Bibliography	83
CHAP'	TER 2	84
Ther	modynamics – I	84
*	Brief Resume of First and Second Law of Thermodynamics	84
*	Entropy Changes in Reversible and Irreversible Processes	87
*	Variation of Entropy with Temperature, Pressure and Volume	92
*	Entropy Concept as a Measure of Unavailable Energy and Criteria for the Spontaneity of Reacti	
*	Free Energy, Enthalpy Functions and Their Significance, Criteria for Spontaneity of a Process	98
*	Partial Molar Quantities (Free Energy, Volume, Heat Concept) 1	.04
*	Gibb's-Duhem Equation	08
*	Problems	11
*	Bibliography1	12

CHAP	ГЕR 3	113
Cher	nical Dynamics – I	113
*	Effect of Temperature on Reaction Rates	113
*	Rate Law for Opposing Reactions of Ist Order and IInd Order	119
*	Rate Law for Consecutive & Parallel Reactions of Ist Order Reactions	127
*	Collision Theory of Reaction Rates and Its Limitations	135
*	Steric Factor	141
*	Activated Complex Theory	143
*	Ionic Reactions: Single and Double Sphere Models	147
*	Influence of Solvent and Ionic Strength	152
*	The Comparison of Collision and Activated Complex Theory	157
*	Problems	158
*	Bibliography	159
CHAP'	ГЕК 4	160
Elect	rochemistry – I: Ion-Ion Interactions	160
*	The Debye-Huckel Theory of Ion-Ion Interactions	160
*	Potential and Excess Charge Density as a Function of Distance from the Central Ion	168
*	Debye-Huckel Reciprocal Length	173
*	Ionic Cloud and Its Contribution to the Total Potential	176
*	Debye-Huckel Limiting Law of Activity Coefficients and Its Limitations	178
*	Ion-Size Effect on Potential	185
*	Ion-Size Parameter and the Theoretical Mean - Activity Coefficient in the Case of Ionic C Finite-Sized Ions	
*	Debye-Huckel-Onsager Treatment for Aqueous Solutions and Its Limitations	190
*	Debye-Huckel-Onsager Theory for Non-Aqueous Solutions	195
*	The Solvent Effect on the Mobility at Infinite Dilution	196
*	Equivalent Conductivity (Λ) vs Concentration $C^{1/2}$ as a Function of the Solvent	198
*	Effect of Ion Association Upon Conductivity (Debye-Huckel-Bjerrum Equation)	200
*	Problems	209
*	Bibliography	210
CHAP'	ΓER 5	211
Qua	ntum Mechanics – II	211
*	Schrodinger Wave Equation for a Particle in a Three Dimensional Box	211

*	The Concept of Degeneracy Among Energy Levels for a Particle in Three Dimensional Box	215
*	Schrodinger Wave Equation for a Linear Harmonic Oscillator & Its Solution by Polynomial	
*	Zero Point Energy of a Particle Possessing Harmonic Motion and Its Consequence	
*	Schrodinger Wave Equation for Three Dimensional Rigid Rotator	231
*	Energy of Rigid Rotator	241
*	Space Quantization	243
*	Schrodinger Wave Equation for Hydrogen Atom: Separation of Variable in Polar Sp	
	Coordinates and Its Solution	
*	Principal, Azimuthal and Magnetic Quantum Numbers and the Magnitude of Their Values	
*	Probability Distribution Function	
*	Radial Distribution Function	278
*	Shape of Atomic Orbitals $(s, p \& d)$	281
*	Problems	287
*	Bibliography	288
CHAP	ГЕR 6	289
Ther	modynamics – II	289
*	Clausius-Clapeyron Equation	289
*	Law of Mass Action and Its Thermodynamic Derivation	293
*	Third Law of Thermodynamics (Nernst Heat Theorem, Determination of Absolute E	ntropy,
	Unattainability of Absolute Zero) And Its Limitation	296
*	Phase Diagram for Two Completely Miscible Components Systems	304
*	Eutectic Systems (Calculation of Eutectic Point)	311
*	Systems Forming Solid Compounds A _x B _y with Congruent and Incongruent Melting Points	321
*	Phase Diagram and Thermodynamic Treatment of Solid Solutions	332
*	Problems	342
*	Bibliography	343
CHAP	TER 7	344
Cher	nical Dynamics – II	344
*	Chain Reactions: Hydrogen-Bromine Reaction, Pyrolysis of Acetaldehyde, Decomposit	
*	Photochemical Reactions (Hydrogen-Bromine & Hydrogen-Chlorine Reactions)	
*	General Treatment of Chain Reactions (Ortho-Para Hydrogen Conversion and Hydrogen-B	
•	Reactions)	

*	Apparent Activation Energy of Chain Reactions	362
*	Chain Length	364
*	Rice-Herzfeld Mechanism of Organic Molecules Decomposition (Acetaldehyde)	366
*	Branching Chain Reactions and Explosions (H2-O2 Reaction)	368
*	Kinetics of (One Intermediate) Enzymatic Reaction: Michaelis-Menten Treatment	371
*	Evaluation of Michaelis's Constant for Enzyme-Substrate Binding by Lineweaver-Burk Pl Eadie-Hofstee Methods	
*	Competitive and Non-Competitive Inhibition	378
*	Problems	388
*	Bibliography	389
CHAP	ГЕR 8	390
Elect	rochemistry – II: Ion Transport in Solutions	390
*	Ionic Movement Under the Influence of an Electric Field	390
*	Mobility of Ions	393
*	Ionic Drift Velocity and Its Relation with Current Density	394
*	Einstein Relation Between the Absolute Mobility and Diffusion Coefficient	398
*	The Stokes-Einstein Relation	401
*	The Nernst-Einstein Equation	403
*	Walden's Rule	404
*	The Rate-Process Approach to Ionic Migration	406
*	The Rate-Process Equation for Equivalent Conductivity	410
*	Total Driving Force for Ionic Transport: Nernst-Planck Flux Equation	412
*	Ionic Drift and Diffusion Potential	416
*	The Onsager Phenomenological Equations	418
*	The Basic Equation for the Diffusion	419
*	Planck-Henderson Equation for the Diffusion Potential	422
*	Problems	425
*	Bibliography	426
INDEX	r	427

Mandeep Dalal (M.Sc, Ph.D, CSIR UGC - NET JRF, IIT - GATE) Founder & Director, Dalal Institute Contact No: +91-9802825820 Homepage: www.mandeepdalal.com E-Mail: dr.mandeep.dalal@gmail.com Mandeep Dalal is an Indian research scholar who is primarily working in the field of Science and Philosophy. He received his Ph.D in Chemistry from Maharshi Dayanand University, Rohtak, in 2018. He is also the Founder and Director of "Dalal Institute", an India-based educational organization which is trying to revolutionize the mode of higher education in Chemistry across the globe. He has published more than 40 research papers in various international scientific journals, including mostly from Elsevier (USA), IOP (UK) and Springer (Netherlands).



Main Market, Sector-14, Rohtak, Haryana-124001 (+91-9802825820, info@dalalinstitute.com) www.dalalinstitute.com