CHAPTER 5

Quantum Mechanics — 11

% Schrodinger Wave Equation for a Particle in a Three Dimensional Box

In the first chapter of this book, we derived and discussed the Schrodinger wave equation for a particle
in the one-dimensional box. In this chapter, we will extend that procedure to the particle in a three-dimensional
box. In order to do so, consider a particle trapped in a 3-dimensional box of length, breadth, and height as a, b
and c, respectively. This means that this particle can travel in any direction i.e. along x-, y- and z-axis. The
potential inside the box is 0, while outside to the box it is infinite.
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Figure 1. The particle in a three-dimensional box.

So far we have considered a quantum mechanical system of a particle trapped in a three-dimensional box. Now
suppose that we need to find various physical properties associated with different states of this system. Had it
been a classical system, we would use simple formulas from classical mechanics to determine the value of
different physical properties. However, being a quantum mechanical system, we cannot use those expressions
because they would give irrational results. Therefore, we need to use the postulates of quantum mechanics to
evaluate various physical properties.

Let v be the function that describes all the states of the particle in a three-dimensional box. At this
point we have no information about the exact mathematical expression of y; nevertheless, we know that there
is one operator that does not need the absolute expression of wave function but uses the symbolic form only,
the Hamiltonian operator. The operation of Hamiltonian operator over this symbolic form can be rearranged
to give to construct the Schrodinger wave equation; and we all know that the wave function as well the energy,

both are obtained as this second-order differential equation is solved. Mathematically, we can say that
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Hy =Ey (1)
After putting the value of three-dimensional Hamiltonian in equation (1), we get
—h? 62+62+62 vlew=g (2)
8m?m\dx? 0dy? 0z2 v==Ey
or
—h? (0% 0%y 0%y 3)
8n2m(ax2 + dy? + 622> +Vy =Ey
—h? (9%y 0% 0%y 4
8n2m(6x2 dy? + 622) TV -Ep =0
or
02 ok 92 8m?m 5
LR Sl iy 7 PN ©)

dx? \@y? 027 h?

The above-mentioned second order differential equation is the Schrodinger wave equation for a particle
moving along three dimensions. Since the conditions outside and inside the box are different, the equation (5)
must be solved separately for both cases.

1. The solution of Schrodinger wave equation, for outside the box: After putting the value of potential
outside the box in equation.(5).1.e..V.=co, we.get

9%Y 0% ~ 0% " 8n%m (6)
X2 Ky a7 E=hr LY 0

Since E is negligible in comparison to the oo, the above equation becomes

0%y 9% 9%y _ (7
dx? +6y2 +622 —oy =0
Loy 9%y 9%y ®)
V=022t a2 T o2
_ 1[0y 0% 0%y _ ©)
v _;<6x2 + dy? * 622> =0

The physical significance of the equation (9) is that the particle cannot go outside the box, and is always
reflected back when it strikes the boundaries. In other words, as the function describing the existence of
particles is zero outside the box, the particle cannot exist outside the box.
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2. The solution of Schrodinger wave equation for inside the box: After putting the value of potential inside
the box in equation (5) i.e. V =0, we get

2y 9%y 9% 8m’m (10)
T it (E—0)p =0
2y %y 9%y s 8n2mE¢ 0 (11)

ox?  0dy? 0z h?

The above equation has three variables and is difficult to solve directly. Therefore, it is better to separate
variable, we already know the steps to solve a one-variable equation. To do so, consider that the wave function
v is the multiplication of three individual functions as

Y(x,y,2) = P(x) X P(y) X P(z) = XYZ (12)

Using the above expression in equation (11); we get

0%2XYZ 0%X¥Z ' "0’XYZ'' 8mimE (13)
& 3y? Ll S XYZv= 0

From the rules of partial derivative, the equation (13) takes the form

ZaZX+XZaZY+XyaZZ+8n2mEXYZ 1, (14)
dx? Ay? dz? h? J
Now divide the above equation by XYZ on both'side i.e.
192X "1.0°YN(1.322 1 “8a°mE (15)
= — - —— & Z0
X 0x#p, Y 0y2~ %Bz72 e
Assuming
K2 = 8n’mE (16)
h2
The equation (15) becomes
10°X 10%Y 10°Z (17)
+k“=0

X 0x? Yoy? Zoz?
Also fragmenting the constant k% along three x-, y- and z-axis i.e. k* = ki + k5 + kZ, the equation (17) can

162X+162Y+1622+k2+k2+k2_0 (18)
X0x2 Ydy? Zoazz XY TF

The above equation can be written as the sum of three equations with only one variable in each i.e.
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D¢ 19
W-l—k,%X:O ( )
9%y (20)
a—}}z-l-k)z,Y:O
0’z 1)
ﬁ+kzz=0

The equations (19-21) are simple one-dimensional differential equations whose solutions can be obtained just
like in the one-dimensional box. The solution of equation (19) will give the x-dependent wave function as well
the energy distribution along x-axis i.e.

2 n.mx n2h? (22)
Yn, (X)) =X = - Sin = and E, = 8ma?
Similarly, the solution of equation (20) will be
- 1 nsh? (23)
wny(y) = Y= = Sin b and_Ey, = —
Just like the above two, the solution of equation (21) will be
2 nmz n2h? (24)
Y, (2) = 2°= = Sin : and E, = Smi?

After putting the expressions of individual wave functions. from equation (22-24) in equation (12), the total

wave function can be obtained i.e.

(25)
8 | mmx | Nnymy | M,mz
lpnxnynz(x’y’z) = % Sln a Sln b Sln c

Since k? = ki + k3 + kZ, the total energy must be the sum of individual energies i.c.

ne My ns

h? (26)
Enxnynz = ?-I_ b2 + c2 Qo

8m
Where ny, n,, n,, are the discrete variable whose permitted values from boundary conditions can be 0, 1, 2, 3,

4....0. Nevertheless, it is worthy to note that even though the » = 0 is permitted by the boundary conditions,
we still don’t use it in equation (25); which is obviously because it makes the whole function zero.
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¢ The Concept of Degeneracy Among Energy Levels for a Particle in Three

Dimensional Box

The solution of Schrodinger wave equation for a particle of mass ‘m’ trapped in three dimensional of
sides a, b and ¢ with zero potential inside and infinite potential outside provide the total wave function v as

(27)
8 . nymx | nymy . n,nz
l/’nxnynz(xJY:Z): @Sln a Sin 5 Sin -

Where ny, n,, n, are the discrete variable whose permitted values from boundary conditions can be 1, 2, 3,

4....0. The variable x, y and z represent the position of the particle along the corresponding axis. Besides, the
expression for total energy is

h? (28)
Enxnynz = ;-'_ b2 + c2

8m

For a cubical box, all the sides become equal (a = b = ¢). Using this condition in equation (27), the total wave
function representing different quantum mechanical states take the following form.

(29)
|8 . mymx | nymy . n,nz
lpnxnynz (‘x' y’ Z) - ; Sln a Sln a Sl?’l a
Similarly, the energy expression also changes to
h (30)
Ennyn, = (n2 +n2 +nZ) Sma?

Now, in order to define various quantum mechanical states, we need to put valid set quantum numbers. The
expression for first quantum mechanical and corresponding energy can be obtained by putting n, = n,, =

n, = 1 in equations (29-30) i.e.

5 nx  my oz 342 (31)
Y111 = Esm? Sln; Sln; and Ejqq =

8ma?

Similarly, the next state with energy can be obtained by putting n, = n, = 1 and n, = 2 in equations (29—
30)i.e.

8 . mx . my . 2nz 6h>2 (32)
Y112 = pe Slnz Slnz SlTlT and E;qp = o
If ny = n, = 1 and n,, = 2; the wavefunction and energy become
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. mx 2wy | Tz 6h2 (33)
Y121 = ; Sln? SlnT Sln; and Ei = W
If n, = n, =1 and n, = 2, the state with energy becomes
8  2nx  my @z 6h> (34)
Y11 = 3 SmT Sm; Slnz and Ey;; = Sma?

It can be clearly seen that three quantum mechanical states 1115, 121 and P, possess the same amount of
energy (i.e. 6h? /8ma?); and therefore, are said to be degenerate. In other words, there are three different ways

of existence of the particle inside the box so that the particle possesses 6h? /8ma? energy as total.
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Figure 2. The energy level diagram representing different quantum mechanical states (in the units of
h? /8ma?) for a particle trapped in a cubical box.

Hence, the degeneracy of the ground state is one i.e. there is only one way for the particle to exist in the box
to create zero-point energy (3h?/8ma?). On the other hand, the degeneracy of first excited stated is 3 as 1115,
Y121 and 5,44, all have 6 units of energy. Moreover, after careful examination of energy diagram, it can be

concluded that degeneracy is 1 if ny = n,, = n,, 3if n, = n, orn, = n, orn, = ny,and 6 if n, # n, # n,.
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% Schrodinger Wave Equation for a Linear Harmonic Oscillator & Its
Solution by Polynomial Method

A diatomic molecule is the quantum-mechanical analog of the classical version of the harmonic
oscillator. It represents the vibrational motion and is one of the few quantum-mechanical systems for which
an exact solution is available. In this section, we will discuss the classical and quantum mechanical oscillator

and their comparative study.
» The Classical Treatment of Simple Harmonic Oscillator

In order to understand the vibrational states of a simple diatomic molecule, we must understand the
classical oscillator first. In order to do so, consider a spring of length » in which a displacement ‘x’ is
incorporated by expending or compressing it.

D R >
P
€ »------ >
r X

Figure 2. The pictorial representation of the displacement-inducing in a typical spiral.

For a moment, imagine that the spiral is extended by a displacement of ‘x’; then the restoring force (F)
developed in the spiral can be obtained using Hook’s law as

F=—kx (35)

Where £ is the constant of proportionality. The minus sign is because the restoring force and the displacement
both are vector quantity but in the opposite direction. In other words, if we expend the spiral, the spiral will
try to compress itself and vice-versa. From equation (35), it seems that the restoring force depends only upon
displacement induced only, however, it is found that stronger spirals have larger restoring force than the weaker
ones for the same magnitude of displacement, indicating a lager force constant. Therefore, the physical

significance of the force constant lies in the fact that it can be used to comment on the strength of oscillator.

Since the potential energy in this expended state is simply the amount of work done in the process of
incorporating the displacement ‘x’, we need calculate the same for further analysis. The restoring force is
proportional to the displacement, and therefore, is a variable quantity; suggesting that we need to carry out the

integration force curve vs displacement. Suppose that the total displacement “x” is fragmented in very small
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“dx” segments. The amount of work done in inducing ‘dx’ displacement will be ‘dw’ and can be given by the

following relation

dw = F.dx (36)

The total work from zero displacement to ‘x’ displacement will be

£ (37)
W= | F.dx
|
] (38)
= | —kx.dx
0
k[xz]x (39)
2 0
- =1 (40)
w = kaz

Since there is no electrostatic-attraction;-the-potential-energy-(V)-of the system-at-displacement will simply be
1 41
V= E kx e ( )

The above equation represents a parabolic behavior ‘and shows that the potential energy varies continuously
with the displacement. Larger the displacement, higher will be the potential energy.
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Figure 3. The variation of potential energy as a function of displacement in a classical oscillator.
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If ‘m’ is the reduced mass of the diatomic molecule, the equilibrium vibrational frequency ‘v’ of the oscillator
can be given as

1 Tk (42)

T2 E

Where m is the reduced mass defined by the ratio of the product to the sum of individual masses i.e. m =
mym,/(my + my). It is obvious that the energy levels of a simple harmonic oscillator in classical mechanics
are continuous (including zero), and have a limit over the expansion and compression for each value.
Furthermore, the classical oscillator is bound to spend most of its time in the extreme state (fully compressed
and fully expended) and the least time in the equilibrium position.

» The Quantum Mechanical Treatment of Simple Harmonic Oscillator

In order to find out the quantum mechanical behavior of a simple harmonic oscillator, assume that
all the vibrational states can be described by a mathematical expression . Since we don’t know the exact
nature of w, we need to follow the postulates of quantum mechanies. Therefore, after applying the Hamiltonian

operator over this symbolic wave function, we'have

Hip=-E (43)
bz £IN.D 11 (44)
812 dx? drh ) ¥07 B
or
—h2<9%y (45)
87'[2m(?_x2+ S,
Rearranging, we have
0%y 8m’m (46)
W-I_ PP (E-VY=0

After putting the value of potential energy form equation (41) in equation (46), we get

0% 8m’m 1 (47)
i —
ax? T R2 (E e ) V=0
Now put the value of £ form equation (42) in equation (47) i.e.
0%y 8m’*m (48)
W T(E - anvzmxz)lp =0
or
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0%y (8m?mE 16m*m?vix? (49)
+ - Y=0
0x? h? h?
After defining constants
8m?mE Am’my (50)
a= 7 and B = .
The equation (49) takes the form
9%y (51)
9z Tla— Bx*)p =0
or
LRV (52)

=+ (- BBx I =0

Now define a new variable y = \/Ex, then we haye-the derivative.as

dy'! (53)
=

Squaring both side of the equation (53), and then rearranging

% LigdlgHllg P E 510 (54)
Now put the value of dx? and fx? in‘equation (52), we get
b o ey = o )
Dividing the above equation by f, we get
ZZTfJ,(%_yz)lp:O (56)

The equation (56) can be solved asymptotically i.e. at very large values of y. Thus, when y > a/f, the equation
(56) becomes

RV (57)
ay2 v =0
The two possible solutions of the above equation are
P = etV’/2 (58)
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Nevertheless, only one of them is acceptable because for y = et ¢/ 2 the wavefunction becomes infinite as y
tends to approach oo. Therefore, the only single-valued, continuous and finite solution we left with is

1/): e_yz/z (59)

Since the acceptable solution given above is valid only at very large values of y, it is quite reasonable to think
that the exact solution may also contain some pre-exponential part to attain validity at all values of y. Therefore,
after incorporating some y-dependent unknown function ‘F(y)’ in equation (59), we get

W =F(y)e'/? (60)

In order to find the value of F(y), differentiate the equation (60) first i.e.

d dF 61
$=—316‘3’2/2.F+d—e‘3’2/2 (61)
Differentiating again, we get
d%y y? y 2,, dF (62)
— = |-y.(~y)e . 2.F —1.e Y /2F (— e /2—>
T [ Y. Gy)eFFOD 4 (Sle )+ -xe m
ar a*F
e T2 RO LYY
+ [ y.e dy e dyZ]
or
d4y 2 2 2, dF 5o d’F (63)
— L = y2e V2 By —e V2 F(y)—2y.e Y /2 feV /2
Tz = VN RS e B )29 R e T
or
d? d%F dF 64
d—;fz[d—yz—ZyE+(y2—1)F] e—yz/z ( )
Now, after using equation (60) and equation (64) in equation (56), we get
d*F dF a 65
[d_yz_ 2yt 07 =1 F] e (E—VZ)F M) e /2=0 ©
or
d*F dF [« 66
o5t G F(y)] e /2 =0 (0

Now because of the quantity e ™ */2 will be zero only at y = oo, the sum of the terms present in the bracket

must be zero at normal y-values i.e.
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2 (&) Fo) =0

(67)

The above differential equation is a “Hermit differential equation” and can be solved to find the expression for

the “unknown” function F(y). The solution of equation (67) can be obtained by the polynomial method by

expressing the function F(y) as a power series in terms of variable “y’.
F=ayg+ay+a,y* +azy3+a,y* ... ...

Differentiating the above equation, we get

dF 5 3
E =aq + 20,y + 3azy° +4asy” ..o o.e ..

Differentiating again, we get

d*F. .
d_yz =203 %\6a3y +1204y7 ... ...
Using equation (68-70) in equation (67), we get
[2a, +6a;y+ 12a,y? 5] — 2yla; #2a3y #3asy* +4azy® .. ]

a
+ (E = 1) lag+ a1y + azy? + azy¥+a,y*...]1=0

or

[2a, + 6asy +12azy? .1 F2a ) +4as y°+ 6asy® + 8a,y* ... ]
a a a ,
—I—[(E——1)a0—l—<E—1)a1y+(E—1>a2y +] =0

After further rearranging

[Zaz + (% - 1) ao] + [6a3y —-2a.y + (% - 1) a1y]

a

+ [12a4y2 —4a,y? + (ﬁ

- 1) azyz] +-=0
or

[+ (5= 1) o] 02 20+ (2= 1))

a
+ [12a4 — 4a, + (E_ 1)a2]y2 +.=0

The above equation is valid only when coefficients of the individual power of y are zero i.e.

For °

Buy the complete book with TOC navigation, Copyright © Mandeep Dalal
high resolution images and

no watermark.

(68)

(69)

(70)

(71)

(72)

(73)

(74)

DALAL
INSTITUTE


https://www.dalalinstitute.com/books/a-textbook-of-physical-chemistry-volume-1/

CHAPTER 5 Quantum Mechanics — I 223

a
2a2+(———1)a0=() (75)
B
For y!
a
6a3+<——1—2>a1=0 (76)
B
For y?
a
12a4+<——1—4>a2=0 (77)
B
Similarly, for y*
a
e+ D)k + Dagys + <E - Zk) a, =0 (78)
The above equation can be rearranged forthe coefficient a5 i.e.
(%—1—2@ak (79)

etz = T T D+ 2)

Where £ is an integer. The expression given above is popularly known as the recursion formula, and allows
one to determine the coefficient a; > 0f the term 2 in'terms of aj -coetficiefit of the ) term. In simple words,
we can calculate a,, a,, ag etc. in terms of ag-if' we 'set @, ='0; likewise, the coefficients as, as, a; etc. can

be obtained in terms of a, if we set ag-= 0.

However, the power series will still be made up of the infinite number of terms, making function F(y)
infinite at y = oo. Therefore, we must restrict the number of terms so. that the function remains acceptable.

This can be made possible if, at a certain value of k' = 1, the numerator in equation (79) becomes zero i.e.

a a
s-1-2k=g—1-2n=0 (80)

B

or

%=2n+1 (81)

Where n = 0,1, 2,3 .... etc. The series that is obtained so contains a finite number of terms and is called as
“Hermit polynomial” i.e. H, (). All these Hermit polynomials are generating-function defined and are given

below.
2 d?’l —s2 (82)
H,(y) =(—-1D"¢eY .d—yn.e y
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For instance, some of the Hermit polynomials for » = 0, 1 and 2 are calculated as given below.

For n =0, the equation (82) becomes

0

d
Ho(y) = (—1)0.ey2.d—yo.e_y2

Hy(y)=1l.e¥’.1.eV =¥V =¢0

Ho(y) =1

For n =1, the equation (82) becomes
H, (y) = (—1)1 ey2 == e‘y2

H; (y) =i(=1). e¥% (£2y). e~ V?

HyO) = (1), (=202 =2y,€°

Hi(y) =2y
For n =2, the equation (82)becomes
2

d
Hz()’) ™ (’1)2.83’2.&—)}—2‘.8_3/

2

d
@) = (+1).ey2.5. —2yaes’

Hy(y) = e [(—2y)e ™ (=2y) +(=2)e™’]

H,(y) = e¥°[(4y? — 2)e™]

Hy(y) = (4% — 2)e¥" ™" = (4y? — 2)e°

H,(y) = 4y* -2

(83)

(84)

(85)

(86)

(87)
(88)

(89)

(90)

C2))

(92)
(93)
(94)

(95)

The total wavefunction: After knowing the unknown part F(y), the complete eigenfunction for a simple

harmonic oscillator in the quantum mechanical world can be written as

Yo (¥) = NpHp (y) e77°/2

(96)

Where N, is the normalization constant for nth state while the symbol H,, (y) represents the Hermit polynomial

of nth order in terms of y-variable. Once the wavefunctions are obtained in terms of y, they can easily be

converted into x-dependent function by simply putting y = \/,[?x.
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Table 1. Eigenfunctions representing various quantum mechanical states of a simple harmonic oscillator.

alfp n Hi(y) yn(y) Yn(x)

1 0 1 Ng.e™>*/2 Ny.e~Bx*/2

3 1 2y Ny.2y.e™Y*/2 Ny (2,/Bx)e~Px*/2

5 2 4y? -2 N, (4y% — 2)e ™"/ N, (4Bx2 — 2)e F*’/2

7 3 8y* =12y  Ny(8y3 — 12y)e /2 N3 (863/%x% — 12,/Bx)e~F¥/2

The normalization constant can be obtained by recalling the fact that every wave function must describe the
corresponding state completely. This means.that square of wave function under consideration over the whole
configurational space must be equal to.unity i.e.

+ 00 400 sz 2 (97)
f P2 dx'= f [Nan(x) e_Z] =, 1
2
N J AN L (98)

o (99)

= w2 (100)
Ny = (—zn f; )
n. vm

It can be clearly seen from the above equation that the normalization consents are different for different states.
For instance, some of the normalization constants are given below.

(L>1/2=<E>1/4 (101)

o = \2001 V7 m
v - <L>1/2 :i(é>1/4 (102)
R VEETIN NAY:

N {L)“ZZL(E)“ (199
2 \2221 v 2WZ \1
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The eigenvalues of energy: Since we have already proved that the total wavefunction for a simple harmonic
oscillator is acceptable only when the following condition of equation (81) is satisfied i.e.

a 104)
Z=2n+1 (
B
Furthermore, we also know that
8m?mE Am’mv (105)
a= PP and f = -

After using the value of a and f, the equation (104) take the form

8n’mE h . (106)
h?2 Ar’my n
or
N\ 1 1 A’ my h? (107)
= X
3 h 8m4m
or
hv 108
Ey =(2n+ 1)7 (108)
or
(109)

1
E; = (n .- —) hy
< 2
Where 7 is a discrete variable (vibrational quantum number) with values 0, 1, 2, 3...00. The symbol E,
represents the vibrational energies of different vibrational states.
» The Classical and Quantum-Mechanical Interpretation of Vibrational States

In order to have a relative interpretation of vibrational states in the classical and quantum-mechanical
framework, recall the classical expression for potential energy curve of simple harmonic oscillator i.e.

a10)
2

Where £ is the force constant and x is the displacement induced. Also, the general expressions for all the
vibrational states and corresponding energies are

1 111
Y, (x) = N,H,,(x) e P and E, = (n + E) hv (10
Where N,, and H, (x) are the normalization constant and Hermit polynomial for nth state.
, — DALAL
Buy the complete book with TOC navigation, ;
high resolution images and Copyright © Mandeep Dalal INSTITUTE

no watermark.


https://www.dalalinstitute.com/books/a-textbook-of-physical-chemistry-volume-1/

CHAPTER 5 Quantum Mechanics — I 227
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Figure 4. The depiction of various vibrational states of a simple harmonic oscillator in the classical and

quantum mechanical framework.

After looking at the figure given above, the following points can be made about the differences and similarities

in the classical and quantum mechanical oscillators.

i) It can be clearly seen that the energy levels of a classical oscillator are continuous including zero while the
energy levels the quantum-mechanical analog is discontinuous with zero-point energy of 4v/2. In other words,
the classical oscillator can have zero vibrational energy but the vibrational motion cannot be ceased completely
in case of the quantum mechanical version of the simple harmonic oscillator.

i) There is always a limit over the compression as well as over the expansion in the classical oscillator to have
a certain amount of energy. On the other hand, since the function becomes zero only at infinite displacement,

there is no limit over the compression and expansion in the quantum oscillator theoretically.
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iii) The classical oscillator spends more time in the extreme states i.e. fully compressed and fully expended,
and spends the least time with equilibrium bond length. As far as the ground vibrational state of the quantum
mechanical oscillator is concerned, it spends most time with equilibrium (because the function is maximum
for 7.4 or x = 0), and probability to spend time in compressed and expended mode decreases as the magnitude

of compression and expansion increases.

iv) If we plot the square of wavefunction vs displacement incorporated, it can be clearly seen that the most
probable bond lengths shift towards the compressed and expanded states as the quantum number increases
which is in accordance with the Bohr’s correspondence principle.

' 2
7h M\ /\[\ %
T i 0

5 5 s
5 Sh ; s
= — 1 0

m 2 L]

A E

' A

A +l//|2

E -
hy I +0
2 \/ 0
O 1]

- r Ll
< 0 >

Figure 5. The variation of probability as a function of bond length or displacement in different vibrational

states of a simple harmonic oscillator.

Furthermore, it also worthy to note that all 1., states are symmetric while all 1,44 wavefunctions are

asymmetric in nature with n nodes.
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% Zero Point Energy of a Particle Possessing Harmonic Motion and Its
Consequence

In order to understand the minimum or the zero-point energy of a simple harmonic oscillator, recall

the general wavefunction representing all the vibrational states of a simple harmonic oscillator i.e.
Un(y) = NpHp (y) e /2 (112)

Where y is a displacement-based variable with a value equal to \/Ex. The constant £ depends upon the reduced

mass of the oscillator (m) and equilibrium vibrational frequency (v) as

_4n*my (113)
~h

The symbol N,, and H,(y) are the normalization constant and Hermit polynomial for nth state i.e.

B\ . d (114)
N, =|———= d H =(=D"eY .—.e7
n <2n n| \/E) an n(Y) ( ) e dyn e

Also, the general expression for the energies is given below.

E, = (n+%)hv (115)

Now, for the ground vibrational state (n = 0), N, and H,(y) can be obtained from equation (114) i.e.
1/4 (116)
Ny = (;) and Hy(y)=1

After using the values of y, N, and Hy(y) in equation (112), the ground state function becomes

1/4 117
o (x) = (%) 1. e-Fx/2 (1

Hence, the ground state wave function does not collapse at n = 0, which means that corresponding energy can
also be obtained by putting n = 0 in equation (115) i.e.

1
E, = (0+—)hv (118)
2
or
1 11
Eo = hv (119)

The above equation gives the minimum energy which is always possessed by a simple harmonic oscillator.
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Figure 6. The variation of ground vibrational wavefunction and probability as a function of bond length or
displacement in a simple harmonic oscillator,

It is well-known that the classical oscillator spends more time in the extreme states i.e. fully
compressed and fully expended, and spends the least time with equilibrium bond length. However, as far as
the ground vibrational state of the quantum mechanical oscillator is concerned, it spends the most time with
equilibrium (because the-function-is-maximum-for#y;;-orx=-0);-and-probability-to-spend time in compressed
and expended mode decreases as the magnitude of compression and expansion increases. Moreover, there is
always a limit over the compression as well as over the-expansion.in the classical oscillator to have a certain
amount of energy; however, since the function becomes zero only at infinite displacement, there is no limit

over the compression and expansion in the-quantum oscillator theeretically.

It is also worthy to note that the energy given by the equation (119) is in joules. However, in many
textbooks or papers, it is also reported in terms of wavenumbers. To do so, we need first put the value of
frequency as v = ¢/4 and then 1/1 = v in the equation (119) i.e.

1 ¢ 1 119
EO = E h-= E hcv ( )

Where c is the velocity of light. Now, to convert the zero-point energy in wavenumbers, divide equation (119)

by hc i.e.
lhev v (120)
72 hc " 2
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% Schrodinger Wave Equation for Three Dimensional Rigid Rotator

In order to study the rotational behavior of a diatomic molecule, consider a system two masses m1;

and m> joined by a rigid rod of length “7”. Now assume that this dumbbell type geometry rotates about an axis
that is perpendicular to » and passes through the center of mass.

Figure 7. The pictorial representation of the diatomic rigid rotator in classical mechanics.

If v, and v, are the velocities of the mass m; and m» revolving about the axis of rotation, the total kinetic
energy (7) of the rotator can be given by the following relation.

1 1 (121)
T = Emlvlz + Emzvzz
Since we know that linear velocity v is simply equal to the angular velocity w multiplied by the radius of
rotation  i.e. v = wr, the equation (121) takes the form

1 1 122
T = Eml(rlw)z + Emz(rzw)z (122)
1 123
T = > (myrf + myrd)w? (123)
1
T = Elwz (123)

Where [ is the moment of inertia with definition I = ¥, m;7%. Furthermore, we know from mass-center that
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m1T1 = mzrz (124)

Now since r = 1y + 1, we rearrange equation (124) to give

m m
iz =—2 5 and o) =——= 5 (125)
m; +m, m; +m,
In the two-mass system | = m;7Z + m,7r#, so have
m, 2 my 2 (126)
I =m (—r) +m, (—r)
my +m, m; +m,
_ ( mym, )rz (127)
m; +m,
Fepied (128)
Where u = mym,/m, + m, is the reduced mass of the rigid diatomic system. Since we that the kinetic energy
and linear moment of a particle of mass moving with velocity'v are
1 129
Tzzmv2 and p = mu (129)
The counterparts in the angular motion can be written as
1 130
Tzzlwz and L =lw (130)
Multiplying and dividing the rotational kinetic energy by /; we have
(131)

T_Iza)z_(lw)z_Lz
o dfrtar e RN 21

It is clear from the above equation that the kinetic energy of a classical rotator can have any value because the
value-domain of angular velocity is continuous. Moreover, as no external force is working on the rotator, the
potential can be set to zero. In other words, the Hamiltonian for diatomic rigid rotator can be given as

H=T+V (132)

I (133)

H=—

T +0
The expression for the operator L? in polar coordinates is
2 - h2[1 6(5_96>+ 1 a] (134)
= a2 sine0o\"" " 36) T Sinz 099
Using equation (134) in equation (133), the Hamiltonian operator takes the form
DALAL
INSTITUTE

Buy the complete book with TOC navigation, Copyright © Mandeep Dalal

high resolution images and
no watermark.


https://www.dalalinstitute.com/books/a-textbook-of-physical-chemistry-volume-1/

CHAPTER 5 Quantum Mechanics — I 233

~ h? 1 0/ . 0 1 0 (135)
A=~ a6 (50 36) * s gl 0

Now, let y be the function that describes all the rotational states of the diatomic rigid rotator. The operation of

Hamiltonian operator over y can be rearranged to give to construct the Schrodinger wave equation; and we all

know that the wave function as well the energy, both are the obtained as this second-order differential equation

is solved. Mathematically, we can say that

Y = Ey (136)
After putting the expression of the Hamiltonian operator from equation (135) in equation (136), we get
hz[ 1 6(5,06>+ 1 6] _ (137)
8n21 5in0 20 \° " %%8) Tsinzg a9 ¥ = EY
or
h? 1wed 0y 1.0 0y (138)
" 8r2l [Sin aa_e?(sm 9%) S 9%] Ay
or
L1348 1§y 1. oy 8n?IEYy (139)
; —(Sm@—)+ ; Vi &
Sin 6.6 007 .C8Sin? 00¢ h?
or
n 0 oY 1V '3y 8mPIEY (140)
—1Sing— — =0
Sind a0 <Sm ae) TS0 00N NOR2

The above differential equation contains two variable ¢ and 6, and therefore, is difficult to solve. Thus, we
need to use the same mathematical technique we used to study particle in a 3-dimensional box i.e. the
separation of variables. To do so, consider the total wavefunction as the product of two independent, one 6-
dependent and other as a ¢-dependent function only i.e.

YO, ¢) =y9(O0) xP(Pp) =0 x P (141)
After putting the value of equation (141) in equation (140), we get

1 8(5_ 0
singog "

a@cp) N 1 009 N 8n2IEOD 0 (142)
90 /)~ Sin20 ¢ hz

Since the first and second terms contain the partial derivatives w.r.t. 4 and ¢, respectively; function ® and ®

must be kept constant correspondingly, i.e.,

DALAL

Buy the complete book with TOC navigation, ;
high resolution images and Copyright © Mandeep Dalal INSTITUTE

no watermark.


https://www.dalalinstitute.com/books/a-textbook-of-physical-chemistry-volume-1/

A Textbook of Physical Chemistry — Volume |

234
1 09 8n21E@q>_0 (143)

o a(s- 9a9>+@ +
sin606\"""36) " " Sin2 004 h2
Dividing the above equation by &@, the equation (143) takes the form
1 1 0 (S' 96@)+ 1 1 0<1>+87r21E B (144)
0sin60o\"""30) T oSinzeap "~ K2
After multiplying equation (144) by Sin?8, we get
Sin6 a (5' 960)+ 16<I>+87TZIES_ 20 — (145)
o a0\ a0) Tdap " hz CMMY T
Rearranging
Sinf 0 (S' 66@>+8n21ES_ 29 109 (146)
o oo\ 20a) 1 Tt TR 9 g
At this point, we can set both sides equal'to constant m” i.¢.
Sin/® o (5, 960>+8n21ES_ 26— i 2 1,09 (147)
0 nao\ " 98 & T 1T
The equation (147) can be fragmented into two equations, each containing-a single variable i.e.
ao (148)
A+’ P.=.0
7% +m
And
Sino d (S' 669>+@8n21E5_ 2 20 — 0 (149)
n % n % 2 in m =
Now dividing the above equation by Sin?6, we get
1 0 (S' 960) +08n21E m260 _ 0 (150)
singoo\""" " 90 h2 Sin?6
or
1 0 (5' 96@) 8m2IE  m? 0—0 (151)
singoo\""" " 90 n2  sin?6)° "
or
1 9 (5' ea@)+ m? 0 =0 (152)
sinoaa\""%39) T\F ~Sinzg)? =
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Where the constant £ is defined as

8m2IE (153)

The solution of ® equation: Recall the differential equation obtained after separation of variables having ¢
dependence i.e.

0D (154)
— 2p=0
9% +m
The general solution of such an equation is
@(¢p) = Ne™® (155)

Where N represents the normalization constant. The wavefunction given above will be acceptable only if m
has integer value i.e. 0,+1, +2, etc. This-can be understood in terms of single-valued, continuous and finite
nature of quantum states.

i) The boundary condition for function @: 1If we replace the angle “¢” with “¢ + 2n”, the position of the point

under consideration should remain the same 1.e:

®(p+2m) =2(0) (156)

Therefore
N pimlp+2m) Ly pime (157)

or

piMAP+2T) — o ime (158)
pimo oim2m — ,ime (159)
piM2T — oim¢ p—im¢ (160)
piM2M — oime—imp — ,0 (161)
eim2m — 1 (162)

Since we know from the Euler’s expansion e = Cos x + i Sin x, the equation (162) takes the form
e™2T — Cos 2rm + i Sin 2mm (163)
After putting the value of equation (163) in equation (162), we get
Cos2mrm+iSin2mm =1 (164)

The relation holds true only when we use m = 0, £1, +2, 13, +4, etc.
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ii) The normalization constant for function @: In order to determine the normalization constant for the @

function, we must put the squared-integral over whole configuration space as unity i.e.

21
f O*Pdp =1
0

or

2m
sz emd e~imb g =1
0

21 21
sz eme=ime gep = sz e®dp =1
0 0
N2[$)5" ="N3[21) = 1

- f

After using the value of normalization constantin equation(155), we get

(p((p) £ \/7 +imae

(165)

(166)

(167)

(168)

(169)

(170)

Solution of @ equation: Recall ‘the differential ‘equation obtained after separation of variables having 0

dependence i.e.

1 8(5 9(’)0) m2 0 -0
Singao > P%9) T\P T sinzg |9 T

After defining a new variable x = Cos 6, we have
Sin?6 + Cos?6 =1
Sin?0 =1 — Cos?6
Sin@ =+/1— Cos?6
Sinf =+1—x?

Also, since we assumed x = Cos 6, the first derivative w.r.t. 8 will be
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dx _ (176)
39 = -Sin @

The derivative of ® function w.r.t. € can be rewritten as

00 06 ox (177)
90 dx 06

After putting the values of dx /96 from equation (176) in equation (177), we get

00 .00 (178)
% =—-Sin@ a
After removing © from both sides
0 ) d (179)
50‘ =-Sin6 é;

Multiplying both sides of equation (178) by Sin 8, we have

a0 a0 (180)
r LM IS P 7
Smeag Sin Hax
20 00 (181)
n L\ o 1 2 | (el
Smﬁag (il A )Ox

Now, after putting the values of equation (179)and (181) in.equation (171), we get

el e

or

9 90 2 183
lo 5] (1 )o =0 Y

The equation given above is a Legendre’s polynomial and has physical significance only in the range of x =
+1 to — 1. Therefore, consider that one more form of ® function so that this condition is satisfied i.e.

0(0) = (1 — x2)7.X(x) (184)

Where X is a function depending upon variable x. The differentiation of the above equation w.r.t. x yields

a6 m_ m dX 185
— = -—mx(1—x)Z2 "X+ (1-x¥)2.— (185)
dx dx
After multiplying the above equation by 1 — x? and 9/dx, we get
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d 00 d m m. . dX (186)
Bl PRIl L .2 _ .2yt &4
ax[(l x)ax ax[ mx(1—x°)2. X+ (1 —x°)2 I

m m
= [-m(1 = x?)™/2 + m2a? (1 - 27X = [2x(m + D1 - xH)2| X’ (187)
m
+ [(1 _ x2)7+1:| XII
Where 0/0x and 0% /dx? are represented by the symbol X’ and X , respectively. Now, after using the value of
equation (184) and equation (187) in equation (183), we get

[—m(l —x2)™?  m?x%(1 - xz)%_l]X — [Zx(m +1)(1 - xz)%]X’ (188)
rla-a7x+ <,6’ —= _sz> (1-x)Z.X=0
Dividing above expression by (1 — x?)"%?, we have
(1 —xPX'"=2(m + DxX' & [ —mfm+ D)X =0 (189)
or
(U= @) X" RaxX"+1X'=0 (190)

Where « = m + 1 and 4 = —m(m + 1). Now assume that the function X can be expressed as a power

series expansion as given below.

X =ap+ ax+a;x% + azx3a. ... . (191)
X’ = al + Zazx 4= 3a3x2 (192)
X" =2a, +'6aix+12a,x% ... « ... ... (193)

Putting values of equation (191-193) in equation (190), we get

(1 —x2)(2ay + 6azx + 12a,x? + 20asx3) — 2ax(a; + 2a,x + 3azx? + 4a,x®)  (194)
+ Aay + a;x + azx? + azx3) =0

or
(2ay + Aay) + [6a; + (A — 2a)a ]x + [12a4 + (A — 2a — 2)ay]x? ... ... ... =0 (195)

The above equation is satisfied only if each term on the left-hand side is individually equal to zero i.e.
coefficients of each power of x are vanish. The general expression for the coefficients must follow the condition

given below.

n+1D(n+2)ay, +[A—2na—nn—1)]a, =0 (196)
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Where n = 0, 1, 2, 3 etc. Summarizing the result, we can write

_2na+n(n—-1)—-21 (197)
2 T O D+ 2) "

After putting values of o and A in equation (197), we get

Anyz _ (m+m)(n+m+1)-p (198)
a, m+1)(n +2)

Which is the Recursion formula for the coefficients of the power of x. Now, in order to obtain a valid
wavefunction, the power series must contain a finite number of terms which is possible only if numerator

becomes zero i.e.
m+m)(n+m+1)—B=0 (199)
B = m+m)n+m+ 1) (200)

Since we know that m as well n both are the whole numbers, theirsum mustalso be a whole number. Therefore,

the sum of # and m can be replaced by.anothet whole number. symbolized by./ i.e.
p=1+1) (201)

Where [ = 0, 1, 2, 3 etc.|After putting the value'of S from equation (201)-in equation (183), we get

o [ 1 ¥ 6@] +11(1+1) it 0=0 (202)
ox (1=x7) ox 1—x2
The general solution of equation (202) is
0 =NPT(x),= NPT(Cos 0) (203)

Where N is the normalization constant and P;™(x)-is.the associated “Legendre function” which is defined as
given below.

d™P,(x) (204)
P (x) = (1 — x2)™/2 !
(x) = (1—x%) dx™
Where P;(x) is the Legendre polynomial given by
1 di(x? - 1) (205)
PO =g ax

In order to proceed further, we must discuss the concept of orthogonality and the normalization of the

“Legendre’s function”.

i) Orthogonality of associated Legendre’s function: The orthogonality of the associated Legendre’s polynomial
follows the conditions given below.
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+1 (206)
J. Pl(x) P"(x)=0 if k#1

-1

+1
) (207)

(I +m)!
P (x) P (x) = — if k=1
__[ RI+DH I —-—m)!

ii) Normalization of associated Legendre’s function: The normalization of the associated Legendre’s
polynomial follows the conditions given below.

+1 (208)
f Oy O3 (d6) = 1

-1

+1 (209)
N? J PT (%) P M%) dx =1

oAl

After solving the integral, we get

. T (210)
120+ 1)\ —m)! |
4@l D= )] 211)
- 2(L+m)!
Using the value of normalization constantin equation (203),-we get
(212)

2042)(l = m)
9(0)=\/( 2a ?I-(m)!m) PP (Cos 6)

The complete eigenfunction of rigid rotator: The total eigenfunction for the rigid rotator now can be
obtained by simply multiplying the solution of ¢-dependent and 6-dependent differential equations i.e.
equation (170) and equation (203).

’ (213)
20+ 1) —m)! 1 .
¢l,m(9' ) = Ql,m(g)d)m((nb) = \/( DU m) .P"(Cos 6). %eilm‘p

2(1 +m)!
(214)
1 @+ na-my .
¢'l,m(9'¢)=\/;\/ 20+ m)! .P"(Cos 0).etime
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“ Energy of Rigid Rotator

The energy of a rigid rotator can be understood only after considering its classical and quantum
mechanical aspects. In the previous section of this chapter, we discussed the classical and quantum mechanical
nature of the rigid rotator. consider a system two masses m; and m; joined by a rigid rod of length “7”’. Now
assume that this dumbbell type geometry rotates about an axis that is perpendicular to » and passes through the
center of mass.

» The energy of Classical Rigid Rotator

If v; and v, are the velocities of the mass m; and m; revolving about the axis of rotation, the total
kinetic energy (7) of the rotator can be given by the following relation.
1 1 (215)

T = =mvf + =m,v3
2 1Y1 2 2V2

Since we know that linear velocity v is simply equal to the angular velocity w multiplied by the radius of
rotation r i.e. v = wr, the equation (215) takes the form

1 1
T = Eml(rlw)z + Emz(rzw)z (216)
1
T = 5 (myri + myrd)w? (217)
(218)

1
T=§Ia)2

Where [ is the moment of inertia equal with definition I =), miriz. Furthermore, the value of I can also be

written as
[ = (M) 2 (219)
m; + m,
I = pr? (220)

Where y = mym,/m, + m, is the reduced mass of the rigid diatomic system. After multiplying and dividing
the rotational kinetic energy by 7 i.e. equation (218), we have

- Po? (Iw)* I? (221)
20 20 2

Where L is the angular momentum of the rotator. It is clear from the above equation that the kinetic energy of
a classical rotator can have any value because the value-domain of angular velocity is continuous. Moreover,
as now the external force is working on the rotator, the potential can be set to zero. Therefore, we can conclude

that the total energy of a classical diatomic rigid rotator is given by equation (221).
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» The energy of Quantum Mechanical Rigid Rotator

In order to understand the energy of a quantum mechanical rigid rotator, recall the Schrodinger wave
equation for the same first i.e.

Sin8 086

1 a( 61/)) 1 oy 8n2115¢=0 (222)

Smeﬁ +Sin29%+ %

Where v is the mathematical expression defining various quantum mechanical states depending upon two
variables @ and ¢. During the course of the solution of the above equation, a constant £ is defined for simplicity
as given below.

8m2IE (223)
T Thr

However, the boundary conditions that keep the function single-valued, continuous and finite; also proved that
the constant f must satisfy the following condition also.

p=llTYH (224)

Where l = 0,1, 2, 3,4 etc. After equating the value of 4 from equation (223) and equation (224), we get

8r2[E (225)
= =L 1)
o p h? yEItug (226)

Hence, unlike the classical counterpart, the.energy levels” of guantum mechanical rigid rotators are
discontinuous.

Figure 8. The energy level diagram of the diatomic rigid rotator in units of h?/8m?I.
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% Space Quantization

The solution of the Schrodinger wave equation for the diatomic rigid rotator provided the
mathematical descriptions of all the rotational states along with their corresponding energies. The general form
of total eigenfunction for the rigid rotator is given below.

(227)
1 20+ 1)1 — ! .
Yim (0, $) = /%J : ;(z ?I-(m)!m) .P*(Cos 6). e*im®

Where v is the mathematical expression defining various quantum mechanical states depending upon two
variables 8 and ¢. Furthermore, the most important property of a rigid rotator after energy is the angular
momentum which can be obtained using the last postulate of quantum mechanics i.e.

- 228
<L>= $hin(0.8) L im(0,9) (229
h (229)
L = 1)—
= VITH D o
Alternatively, we know that the energies of various rotational states of rigid rotators are given by the following
relation.
E = h I(l+1 (239)
=gz (LD

Where | = 0, 1, 2, 3, 4 etc. Also, we know that the angular momentum and energy are related classically as

1 lw)? L2 231
E =— 1(1)2 — ( ) - _ ( )
2 21 21
or
L=+v2EI (232)

After using the value of energy from equation (230) into equation (232), we get

12 (233)
L= |2l I+ 1)
or
B2 (234)
or
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h 2
L=+ D5 (235)

Which is exactly the same as given by equation (229). Since [ = 0, 1, 2, 3,4 etc., the quantum mechanically
allowed values of angular momentum (in the units of h/2m) are given below.

Lo =+/0(0 + 1) unit = 0 unit (236)

L, = /1(1 + 1) unit = V2 unit (237)
L, = /2(2 + 1) unit = V6 unit (238)
Ly = /3(3 + 1) unit = V12 unit (239)

However, there is boundary condition in quantum mechanics that says that only integral effects are allowed
reference direction if the angular momentum is generated by integral-quantum number and half-integral effects

are allowed in reference direction if the momentum is generated by half-integral quantum number.

This can be understood by taking the example of a“diatomic molecule rotating in the first excited
rotational state i.e. | = 1. The angualar mementum of such a molecule will be v/2 or 1.414 units. However,
since this angular momentum is obtained using an integral-quantum number (.= 1), only integral effects (i.e.
+1,0,—1) are allowed in reference direction. Now if z-axis is the reference direction, the effect of any vector
A in the reference direction is caleulated by multiplying its magnitude with the cosine of the angle it makes
with reference direction.

A = —OC =
A. = OC = BP
Z=Uxis i
A, =CP=0B
)
o R ——— : :
— :
A, '
-
0 A :
0 s : >
A, B y-axis

Figure 9. The angular momentum of the diatomic rigid rotator (left) and its rectangular resolution.
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In tringle OPC, the side OC represents the effect of the angular momentum vector A along z-axis, can be
calculated as given below.

ocC (240)
0P = Cos 0

0C = OP.Cos 6 (241)
A, =ACos® (242)

Hence, a diatomic molecule in its first rotational state cannot rotate in xy-plane since it will generate v2 or
1.414 units of angular momentum along the z-axis (from right-hand thumb rule). In other words, the V2 units
of angular momentum cannot orient itself along z-axis because this makes 8 = 0° and since Cos 0 = 1, /TZ =
A i.e. angular momentum effect along the z-axis is also 1.414 unit which is not allowed quantum mechanically.
The effects of angular momentum allowed-in the z-direction are +1,0, —1; for which angles required are
determined as follows.

1

+1=V2Cos€ = _ 0 =_Cos T~ =45° (243)
V2

0

0=4V2€Ces® = \P=CosT 1=+ 903 (244)
V2
-1

-1 =VRCos9la=z 118 ECos Fea= 135° (245)
V2

Hence, we can say that in order to be allowed;.the 1.414-units of angular momentum must orient itself only at
45°,90° and 135° in space from reference direction (z-axis in this case).

459
0°) 2 unit o

35

Figure 10. The space quantization of angular momentum of rigid rotator in / = 1 rotational state.
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Since the orientation of angular momentum can orient itself in any direction from the z-axis as far as the
effective angular momentum +1 unit along z-direction; therefore, we should use a cone around the same at

45°, The same is true for 0 and —1 effects with 90° and 135°, respectively.

(————C

No rotation
(zero angular momentum)

=0

o

.-

V6 unit

Sa

V6 unit

12 unit

-4

V12 unit

-~

V12 unit

> 12 unit

V12 unit

V12 unit

L

V12 unit

Figure 11. The space quantization of angular momentum of the rigid rotator in / =0, 1, 2 and 3 states.

It is also worthy to mention that the concept of space quantization is equally applicable to the angular

momentums of all other systems also like orbital or spin angular momentum of electrons or nuclei.
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% Schrodinger Wave Equation for Hydrogen Atom: Separation of Variable in
Polar Spherical Coordinates and Its Solution

In the first section of this chapter, we derived and discussed the Schrodinger wave equation for a
particle in a three-dimensional box. In this section, we will apply the procedure to an electron that exits around
the nucleus. In order to do so, consider an electron at a distance » from the center of the nucleus, and this
electron can travel in any direction i.e. along x-, y- and z-axis. The potential energy of such an electron-nucleus
system will be —Ze? /r; where Ze and e are charges on nucleus and electron respectively.

- -

______

Figure 12. An electron around nucleus at r distance.

So far we have considered a quantum mechanical system of an electron around the nucleus. Now suppose that
we need to find various physical properties associated with different states of this system. Had it been a
classical system, we would use simple formulas from classical mechanics to determine the value of different
physical properties. However, being a quantum mechanical system, we cannot use those expressions because
they would give irrational results. Therefore, we need to use the postulates of quantum mechanics to evaluate
various physical properties.

Let y be the function that describes all the states of the electron around the nucleus. At this point we
have no information about the exact mathematical expression of y; nevertheless, we know that there is one
operator that does not need the absolute expression of wave function but uses the symbolic form only, the
Hamiltonian operator. The operation of Hamiltonian operator over this symbolic form can be rearranged to
give to construct the Schrodinger wave equation; and we all know that the wave function as well the energy,
both are the obtained as this second-order differential equation is solved. Mathematically, we can say that

Yy =Ey (246)

After putting the value of three-dimensional Hamiltonian in equation (1), we get

“R2 (92 9% @92 (247)
sr2m\ox2 T oy2 To2) TV |V = EY

or
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—h% (9% 0% %P (248)
8m?m (axz dy? + 622> +Vy =Ey
—h? (3%y 3%y %Y (249)
8n2m(6x2 dy? + 622> TV -EY =0
92y 9%y 9%y 8n’m (250)

oxZ Tayz Tagz Tz E-VI¥=0

After putting the value of potential energy of the electron-nucleus system in equation (250), we get

K 0%y 02 8m? Ze? 251
Y Y Y 8w m E+i p=0 (251)
0x?  0y? 0z2 h? T

The above-mentioned second order differential-equation is-the Schrodinger wave equation for an electron
around the nucleus. However, since it is‘heither completely in cartesian nor completely in polar coordinates
(contains x, y, z as well as r variable), the'solution is very much difficult: Therefore, recall the transformation
of cartesian coordinates to polar coordinates in.three dimensions as given below.

A

ZTaxis
Tl |

B X-axis

O

\

y-axis

Figure 13. Correlation between cartesian and polar coordinates in three dimensions.

In tringle AOP, the side OA is simply the z-coordinate and can be obtained as

OA
§=Cosl9 = O0OA=0PCosf = z=rCosH (252)
Similarly, in AOP
AP
§=Sin9 = AP =0PSin6 = 0Q=rSinf (253)
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In tringle BOQ), the side OB is simply the x-coordinate and can be obtained as

OB : (254)
E=Cos¢ = O0OB=0QCos¢p = x=rSinfCosd

Since the side BQ equal to OC, BQ also represents the y-coordinate and can be obtained as

%=Sin¢ = BQ=0QSingp = y=rSinfSing (255)

Now using equation (252-254), the equation (251) can be transformed to polar coordinates as given below.

10 oy 1 0 oy 1 0% 8mn?u Ze? (256)
29 (28,2 Y e g¥ _
r2 or (r 67‘) * r2Sinf 06 (Sm@ 69) + r2 Sin%6 d¢p? + h? E+ r ¥=0

or

18/ 0y 1 @ o L Ze? (257)
= (2 Z (s _
r2 6r<r 6r>+5in6 a0 (Sm@ 66>+Sin260¢)2 ¥ h? b+ r =0

Which is the Schrodinger wave equation for hydrogen and hydrogen-like species in polar coordinates.
» Separation of Variables

The wave function representing quantum mechanical states, in this case, is actually a function of
three variable r, € and ¢. Now, we know that it is casier to'solve three differential equations with one variable
in each rather a single differential equation with' three variables.  Therefore, in order to separate variables,
consider that the wave functionyy is the multiplication of three individual funetions as

Y, 6, Y= P ()X PO X ()= R. 01D (258)
After putting the value of equation (258)-in equation (257) and then multiplying throughout by 7, we get

(259)

Sin6 00

@(Da(ZaR) ®R 0 (S' 969)+ RO 62<D+8n2ur2 E_I_Ze2 OBR = 0
" or m Sin%0 d¢? h? r B

or a6
Furthermore, divide equation (259) throughout O®R i.c.

16(26R) 1 1 a(_ a@> 1 1 0% 8112;11"2( Ze2> 0 (260)

(2 )y 2 = (sing D) 4 = —
Ror\" ar) T osmeae\""™ 30) T osinreagz T 2 -

or

16(26R) 8m?ur? p Ze*\ 11 6(_960) 1 1 0% (261)
Ror\" or h2 v )T T osin000\"""" 36) ~ ®Sin?0 92

The above equation holds true if we put both sides equal to a constant £ i.e.
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10 ( 26R)+87'[2ur2 E+Ze2 B (262)
Rar\" ar h? r =F
and
11 a (5' 960)+ 1 1 0% (263)
05me90\° " 30) T osmzeapr - P

The equation (262) contains only 7 variable, and therefore, is called as the “radial equation”. However, the
equation (263) still contains two variable, and thus, needs further separation. To do so, first multiply equation
(263) throughout by Sin?6 i.e.

Sing 9 (5' ga@)+ 10 o (264)
o 90\5M9%g) T 55g2 = TP S
or
Sin0 3 (5, Qa@)+ 7 PO (265)
R AT LR Ak~ FTY.

The above equation also-helds-true-if we put-both-sides-equal-io-a-constant-m>i-e:

Siné a 00 (266)
; (5 iy
5 ag(Sm969>+ﬁSm9 m
and
1 9% (267)

e — _m?
® dp?
The equation (266) contains only @ variable, and therefore, is called as “theta equation”. Likewise, the equation
(267) contains only ¢ variable, and therefore, is called-as “phi equation”.
» Solutions of R(r), ©(6) and d(¢) Equations

The single variable equations obtained after separation of variables can be solved separately to yield
r, 0 and ¢-dependent functions which then are multiplied give total wave function.

1. The solution of ®(¢) equation: Recall and rearrange the differential equation obtained after separation of
variables having ¢ dependence i.c.

1920 , 9 (268)
- = = — =
dagz " ap

The general solution of such an equation is

®(p) = Ne™m® (269)
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Where N represents the normalization constant. The wavefunction given above will be acceptable only if m
has integer value i.e. 0,41, +2, etc. This can be understood in terms of single-valued, continuous and finite
nature of quantum states.

i) The boundary condition for function @: If we replace the angle “¢” with “¢ + 21", the position of point under

consideration should remain the same i.e.

P(p + 2m) = ©(P) (270)
Therefore
Neim(@+2m) — pgime (271)
eim(@+2m) — pim¢ (272)
oM. pimam.— gime (273)
SiM2T L Jim$atrime (274)
pim2m = ,imep—ime._ ,0 (275)
pim2m — 1 (276)

Since we know from the Buler’s expansion e = Cos x + i Sin x, the equation (276) takes the form

im2m _

e Cos 2mm +.i Sin 2mm (277)
After putting the value of equation (277) in equation (276), we get
Cos 2nrm+1 Sin2mtm =.1 (278)

The relation holds true only when we use m = 0,41, +2, 3, +4, etc.

ii) The normalization constant for function @:In.order to-determine the normalization constant for the @

function, we must put the squared-integral over whole configuration space as unity i.e.

2 (279)
f P*Pdep =1
0
2m (280)
sz elm® e~imé g =1
0
21 21 (281)
sz elime—imeo d¢ — sz L d¢ =1
0 0
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N?[¢]§™ = N?[2n] = 1 (282)

e (283)
T 2n

After using the value of normalization constant in equation (269), we get

) (284)
P (@) = \/7 fmep

Which is the complete solution of ¢-equation.

or

Table 1. Complex andteal forms.of some normalized ®-functions.

[m| Complex form Real form
" {42 = ! ()] = !
old) = |5~ o) = |5~
1 ® ittt P - |Le¢
+1(@) = Ee +1(@) = T os ¢
i : 1
> (0)5 f . P-1(p) = |7 Sind
2 T 28 1
Pia(P) = _n Py2(g) = T Cos (2¢)
1 1
>_5(9) = f— 29 O_5(9) = |- Sin (20)
3 1 3 1
Pia(p) = |5-e? Pi3(p) = |~ Cos (3¢)
1 ) 1
P_3(¢) = j;e"lg“’ P_3(¢) = f Sin (3¢)
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2. The solution of @(0) equation: Recall and rearrange the differential equation obtained after separation of

variables having 0-dependence i.e.

Sinf 0 ( 20
0 90

. il . 2 — 2
Sln969)+[35m 6=m

or

Si 96(5' 060)+0 Sin26 20 =0
in 50 in 50 BSin m<0 =

Now dividing the above equation by Sin?6, we get

! a(y fm)+@ —0
Singag\"095g) T OF — 5z =

or

! a(S' 969>+ B 0=0
simoaat " ae) T P Sinte)® =
After defining a new variable x = Cos 6, we have
Sin%6.+ Gos?8 = 1

Sin?8' =1 —-'Cos?6
Sin@ =+/1— Cos?6
Sin @ =x1— x2

Also, since we assumed x = Cos 0, the first derivative w.r.t. & will be

ax_ Sin 0
50 in

The derivative of ® function w.r.t.  can be rewritten as
00 00 0x
90  9x 06
After putting the values of dx /08 from equation (293) in equation (294), we get

00 _ . 09
a0 "%

After removing © from both sides
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9 9 (296)
% = —Sin 9 a

Multiplying both sides of equation (295) by Sin 8, we have

00 00 (297)
. G 2 il
Sin@ 50 Sin“ 6 7%
00 00 (298)
. - _ 2 il
Sin 6 50 1-x )c')x

Now, after putting the values of equation (296) and (298) in equation (288), we get

1 9 00 m? _ (299)
m(—Slnea)[—(l—xz)a +<B—1_x2>@—0

d ae G 300

R 8 Gy LR .

The equation given above is a Legendre’s polynomial and has physical significance only in the range of x =
+1 to — 1. Therefore, consider that one more form of ® function so that this condition is satisfied i.e.

6(6).= (1Y% x(x) (301)

Where X is a function depending upon variable x. The differentiation of the above ‘equation w.r.t. x yields

00 m_ mdX 302
v— (1l g% 2) 2 K (17 228 — (302)
ax dx

After multiplying the above equation by T x? and 0/dx, we get

0 00 0 m m . dX (303)
o —x)—| = —={= — x2)2 —x2)2 +1 —]
e [(1 x )ax] E)x[ mx(1 —x%)27X + (1 — x°) I

m m
= [—m(l —x2)™? + m2x2(1 - x2)7_1]X - [Zx(m +1)(1 - x2)7] X' (304)
m
+ [(1 - x2)7+1] X"
Where d/0x and 02 /0x? are represented by the symbol X’ and X, respectively. Now, after using the value of
equation (301) and equation (304) in equation (300), we get

m m
[—m(l — x2)™2 4 m2x2(1 — x2)7_1]X - [Zx(m +1)(1 - x2)7]X’ (305)
m+1 ” mz m _
+[a -z x +<B— 1_x2>(1—x2)2.X =0
Dividing the above expression by (1 — x2)™/2, we have
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1—x)X"-2(m+1xX'+[f—m(m+1]X=0 (306)
or
(1—x»)X" - 2axX'+2X =0 (307)

Where a =m + 1 and A = f — m(m + 1). Now assume that the function X can be expressed as a power
series expansion as given below.

X=ayg+a;x+a,x*>+azx3........ (308)
X'=a; +2a,x + 3a3x? ... ... ... (309)
X" =2a, + 6asx + 12a,x% ... ... ... ... (310)

Putting values of equation (308-310) in equation{(307), we get

(1 —x?)(2a, + 6azx + 12a,x%+ 20asx?) #2ax(a, + 2a,x + 3a3x? + 4a,x3)  (311)
+ A(af + X+ azx’ 4 azx3) =0

or
(2a, + 1a,) + [6a; ¥ (A~ 2a)a,]x + [12a, + A= 2a +2)a]x? .. ... =0 (312)

The above equation is satisfied only if each term on the left-hand side ig individually equal to zero i.e.
coefficients of each power of x are vanish. The general expression for the coefficients must follow the condition

given below.+
(n+D)(M#* 2)a, 2+ [ — 2na—nn==la, =0 (313)
Where n = 0, 1, 2, 3 etc. Summarizing.the result, we can/write

T 2natn(n—A1)y—2 (314)
2 T T D+ 2) "

After putting values of o and A in equation (314), we get

Apyz _ (m+m)(n+m+1)-p (315)
a, n+1(n+2)

Which is the Recursion formula for the coefficients of the power of x. Now, in order to obtain a valid
wavefunction, the power series must contain a finite number of terms which is possible only if numerator

becomes zero i.e.

m+rm)(n+m+1)—-=0 (316)
B=m+m)(n+m+1) (317)
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Since we know that m as well n both are the whole numbers, their sum must also be a whole number. Therefore,
the sum of # and m can be replaced by another whole number symbolized by / i.e.

B=10+1) (318)

Where [ = 0, 1, 2, 3 etc. After putting the value of £ from equation (318) in equation (300), we get

g [1 2 60]+ e --""Jo=o (319)
0x =9 0x 1—x2|
The general solution of equation (319) is
O =NP™(x) = NP"(Cos 6) (320)

Where N is the normalization constant and P;"(x) is the associated “Legendre function” which is defined as

given below.

RO DL
Where P;(x) is the Legendre polynomial given by
2 GrED)! (322)

LU vy

In order to proceed further, we must discuss, the concept of orthogonality and the normalization of the
“Legendre’s function”.

i) Orthogonality of associated Legendre’s function:The orthogonality of the associated Legendre’s polynomial
follows the conditions given below.

+1 (323)
j PR x) =0 if k#1

-1

+1 (324)

2 (+m) _
Pt (x) P (x) = — if k=1
—f1 I+ —m)!

ii) Normalization of associated Legendre’s function: The normalization of the associated Legendre’s

polynomial follows the conditions given below.

+1 (325)
f Oy O3 (d0) = 1

-1
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+1 (326)
N? J. Pl'(x) P (x)dx =1

-1

5 2 (+m)t (327)
‘RI+DA-m)
v @+ Da-—m (328)
h 2(L +m)!
Using the value of normalization constant in equation (320), we get
o o |GLEDU=mL (329)
tm(8) = 2dFm L8
Which is the complete solution of ®-equation.
Table 2. Some normalized ®-functions and corresponding spherical harmonics.
O-functions Spherical-hatmonics
0 i 1 , 1
e =
i Yoxz=e= | [—
o ’ Cos 6 ¥ ’ Cos 6 !
= |z Cos Z |z Cos.—
1,0 2 1,0 2 m
3 3 1 ..
01,41 = \/; Sin6 Yii1= \/; Sin 6. ’%ei“ﬁ
5 ) 5 ) 1
02'0 = g (3COS 6 - 1) YZ,O = § (BCOS 9 - ).E
15 | 15 . 1 "
0,41 = ZSmHCosG Y1, = ZSmHCosG. %e—
/15 15 1 .
_ |22 2 — |22 2 o ti2¢
0242 16 Sin“ 0 Y540 6 Sin“ 6. 27Te
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3. The solution of R(r) equation: Recall and rearrange the differential equation obtained after separation of
variables having r-dependence i.e.

10 ( 5 aR) N 8mlur? £t Ze*\ (330)
Ror\" or h? r ) g
After putting / = h/2m and rearranging, we get
10 OR\ 2ur? (331)
— (2= — =
Rar(r 6r)+ e E-V)=F

After multiplying by R on both sides and then dividing by »* throughout, we get
BR (332)

li( 2R ks
r2

)+2“E V)R =
r2or or ﬁ( IR =

Now, as we know from the solution of ®-equation that:f = [(l + 1), the above equation takes the form

1,0 ORN  2u L+ 1)R (333)
AR ) L E (E= Q)R
fr2 Or(r 6r)+h2( ) e
14 OR\ 2u [(l4+ DR (334)
e 2 —_— _— — = e
7\ ar( c')r) i h? RT A
or
1 9%R oR 2u '+ 1) (335)
— =+ 2r—|+|—=(F—-V)— R=0
rZ[r 6r2+ "or . hz( ) r2
0’R 20R 20 L(I+:1) (336)
N =L | (B — V) « R=0
[arz v, r ar] [hz ( ) (i
Putting the value of potential energy for atomic hydrogen or hydrogen-like species again in the above equation,
we get
2R 20R [2uE 2uZe? 1(1+1) R =0 (337)
or? ror h2 h2r r? B

As we know from the classical mechanics that elliptical orbits represent bound states have energies less than
zero whereas hyperbolic orbits represent unbound states have energies greater than zero. Now assume that

electron around the nucleus is bound somehow i.e.

2uUE 5 uZe? (338)
BEvRe a® and g A
Using equation (338) in equation (337), we get
, — DALAL
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92R  20R 201 I +1) (339)
bt | a2+ —— R=0
or?  ror T T2

At this stage, we need to define a new variable p = 2ar, so that

9]
9% _ . (340)
dar
Which follows
OR _OR 0p _ OR (341)
ar  dp or “ap
Also
0*R 9 [OR 0 oR d 0p OR1 dp 0 oR (341)
P I SO RCC o
or? orlorl _or opl \oridp dpl. adrap dp
0%R o ad [2 OR g 5 OZR (342)
ar? . “ap “ap o dp?

After using the values of R /87 and 0?R/07+2 from equation (341) and equation (342) in equation (339), we
get the following.

0ER 2 OR 200 1l +1 343
4a2—+-r—2a—~+[—a2 & ( )]R=0 (343)

dp? op

Now divide the above equation by 4a?i.e.

0%R i 1 0R L ind@ 102 (344)
op? aradp 44 20" 4a?r?
Using p = 2ar, we get
9°R 20R 1 2 I+ (345)
—+—-——+|-=+—-- R=0
dp* pop 4 p p?
When p — oo, the above equation takes the form
0’R 1 (346)
———-R=0
op?* 4
The general solutions of the differential equation given above are
R(p) = e*P/? and R(p) = e P/? (347)

The function R(p) = eP/? becomes o when p = 0, and hence, is not acceptable. Therefore, we are left with
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R(p) = eP/2 (348)

Since the acceptable solution given above is valid only at very large values of p, it is quite reasonable to think
that the exact solution may also contain some pre-exponential part to attain validity at all values of p. Therefore,
after incorporating some p-dependent unknown function ‘F(p)’ in equation (348), we get

R(p) = F(p) e=P/? (349)
Differentiating above equation with w.r.t p at first and second order and then putting the values of R(p),

OR/dp and %2R /dp? in equation (345), we get

PP P

aZ_F (2 )8F+[ 1 2 l(l+1)]F_0 (350)
; =

ap2 \p Jop

For simplification, put 92R/dp? = F"" and 0R/dp = F'i.c:

2 0l CAfpak(l + 1)
F”+(——1)F’+ ——+ =4 77— | ¥
P P PR P

(351)

Hence, the problem has been reduced to the determination of the seolution-of 7 which can be assumed as

F(p) mp3G(p) (352)

Where G (p) represents a power series expansion of p 1.e:

G(p) ='ag +'ap'+ap? +azp>.. (353)
Or we can say that
k= (354)
G4 alp®
k=0

It is also worthy to mention that ag # 0. Now differentiating equation (352) w.r.t. p, we get
F'(p) = sp51G + p°G’ (355)
The double derivative of the same will be
F'"(p) =s(s — Dp52G + 2sp5~ G’ + p5G" (356)

After putting the values of F(p), F'(p) and F'"'(p) from equation (352, 355, 356) into equation (351), we get

2
s(s = 1)p572G + 2sp5~1G" + pSG" + (E — 1) [sp5~1G + pSG'] (357)
1 1 l(l+1
+|——+—-—-— ( > )]pSG =0
p P p
, — DALAL
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Multiplying throughout by 4p?, we get

4p%s(s — 1)p572G + 4p>.2sp 1G' + 4p%.p5G" + (8p — 4p?)[sp*~1G + pSG']  (358)
+[—4p+4pA—4l(L+ 1D]pG =0

or
4s(s — 1)pSG + 8spSt1G' + 4p5T2G" + 8spSG — 4spST1G + 8pStIG’ (359)
—4pST2G" — 4pSTIG + 42pSTIG — 411+ 1)pSG =0
or
4s(s — 1)pSG + 8s5p5G — 4spSt1G — 4pSt1G + 4ApSt1G — 41(1 + 1)pSG (360)
+8sp°*1G" + 8p TG — 4p t2G" + 4p°tPG" = 0
or

[45(s — 1)p° + 8sp®s = 4spStl“Hap3hTa 47 pSth— 411 + 1)p5]G (361)
s [8Sps+1 4 8p5+1 — 4p5+2]GI e 4ps+2GN =0

Dividing throughout by p*®, we get

[4s(s = 1) + 85— 4sp =4p + 44p — 4 + 1)]|G + [8sp + 8p — 4p?]G’ (362)
+ 407G =0

If p = 0, the function G(p) = a, and the above equation takes the form
f4s(s = 1)t 8s'= 4l(l1+ D]a, =0 (363)

Since ay # 0, the quantity that must be equal to zero to satisfy the above.result is

4s5(s:— 1)+ 8s—4l(l+1)=0 (364)
s(s—1)+2s—-1l(l+1)=0 (365)
ss+1)—-l(l+1)=0 (366)

ss+1)=I(l+1)
Which implies that
s=1 or s=—(+1) (367)

Now, if we put s = —(I + 1) the first term in the function F(p) becomes a,/0'** at p = 0 which infinite, and
hence is not an acceptable solution. Thus, the only we are left with is s = [; after using the same in equation
(362), we get
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[41(1—1)+8l—4lp —4p + 42p — 41(1 + 1)]G + [8lp + 8p — 4p?]G’ + 4p%G"
=0

[—4lp — 4p + 4Ap]G + [8lp + 8p — 4p?]G’ + 4p>G" =0
Dividing the above equation by 4p, we get
[-l-1+2G+[2l+2—-p]G"+pG" =0

Now differentiating equation (353) at first and second order, we get

&

=00

Z ag. k.pk1

G'(p) = a;1p™ 1+ ay2p? 1 +az3p3 .. =
k=0
Similarly

k
G"(p) =a,.2.(2 —1)p?2+a3.3.(3— 1)p?*Z4.~= Z ag. k. (k—1).p*2

=0

[ee]

&

After using the values equation (354,371, 372) into equation (370), we get

k=co k=oc0 k=co
[-1—1+ 1] Z apf + 20 +2—p] Z ar o p Z Ak, (k — 1). p*=2
k=0 k=0 k=0

=0

(368)

(369)

(370)

(371)

(372)

(373)

The above equation holds true only if the coefficients'of individual powers of p become zero. So, simplifying

equation (373) for two summation terms (ax and asi1); we have

[ — 1+ A[ap® + aps "] F 204 21 =p][ag. kep* ™ + ageyq. (k + 1). p¥]
+ plag. k. (k = 1D):pk 24 a7 (k + 1. k.p* 1] =0

—lagp® — axp® + dagp® — L1 p** — a1 P + A1 p + 21ay. ke pF Tt
+ 2a;. k. p*t — pay. k. p*t + 2lag 4. (k + 1).p% + 2ay41. (k
+ 1).p* — pagsq. (k +1).p% + p.ag. k. (k — 1). p*2
+p.appr.(k+ 1) k.p¥ 1 =0

Now putting a coefficient of p* equal to zero, we get

—lagp® — app® + Aagp® — ay. k. p* + 2lag,,. (k + 1). p* + 2a541. (k + 1). p*
+ apsq. (k+1).k.pF =0

—lak — Qg + /‘Lak - akk + 21ak+1(k + 1) + 2ak+1(k + 1) + ak+1(k + 1)k =0

or
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[—1—1+A—klag + [210c + 1) + 2(k + 1) + (k + Dk]ags, =0 (378)
[200 + 1) + 2(k + 1) + (k + Dklags; = —[-1 — 1 + 1 — klay (379)
or
[+1-2+k (380)
T T oIk + D + 20k + 1) + (k + Dk ¥
or

L H1-A+k (381)
LT k+ DRI+ Ek+2) "

The equation (384) is the recursion formula where £ is an integer. This expression allows one to determine the
coefficient a4 in terms of a;, which is arbitrary.

Now, since the series G(p) consists of the infinite number-of terms, the function F(p) becomes
infinite at a very large value of £ i.e. infinite: Consequently, the function R(p) will also become infinite if the
number of terms is not limited to a finite value. Therefore, we must break off the series to a finite number of

terms which is possible only if the numerator becomes zero i.e.

| + 1 AH+T=]0 (382)
Define a new quantum number“#"" at this stage as

A=l+1l+k=n (383)

Since / and k are integers, n can be 1,2,3.4 ..., and so on. Moreover;asn >'[ + 1, the largest value that 1 can
have is n — 1. Hence, the value of /‘has a‘domain ranging from O:to'n — 1. Putting 4 = n in equation (370)

[-l—=1+m]G+[2[+2—p]G' 4+ pG" =0 (384)
Defining 2l + 1 =pandn + [ = q, we get
[q—plG+Ip+1-plG"+pG" =0 (385)

The solution of the equation given above is the “associated Laguerre polynomial” multiplied by a constant
factor i.e.

G(p) = CLy(p) = CLZL (p) (385)

The constant C can be set as normalization constant and “associated Laguerre polynomial” is

k=n-i-1 (_1)k+1[(n + l)!]zpk (385)

L2l+1 — Z
ntt (P) L (n—1-1-k)!@l+1+k)!k!
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After using the value of F(p) from equation (352) in equation (349), we get radial wavefunction as
R(p) = p*G(p) e P/? (386)
Since s = [ and also using G (p) from equation (385), the above equation takes the form

R (p) = C e P/2p' 1241 (p) (387)

Now, after using the value of L2 (p) from equation (385) in equation (387), we get

T DR+ D12 (388)

R =C —p/2,l Z
ni(p) = Cerip L G-l-1-RI@+ 1+

i) The normalization constant for function R(r): In order to determine the normalization constant for the R

function, we must put the squared-integral over wheleconfiguration space as unity i.e.

% (389)
f R: (r).r?.dr =1
0

The factor 72 is introduced to convert the length dr into a volume around the center of the nucleus. At this
point, recall the value of p again but in terms of equation (338, 383) i.c.
2uZien - 2uzedn 0270 qe? (390)

P = i n2n Y

Since ay, = h?/ue? i.e. the “Bohr radius”, the equation (390) takes'the form

-2 G91)
=7 " q
So that
_ o (392)
"=o7P
Also
_ o (393)
dr = 7 dp

After using the values of R, ;(p),  and dr from equation (388, 392, 393) in equation (389), we get

< 394)
2 Ma, 1% nag (
e[ er ol (o] [57] 0 =1
0
or
, — DALAL
Buy the complete book with TOC navigation, ;
high resolution images and Copyright © Mandeep Dalal INSTITUTE

no watermark.


https://www.dalalinstitute.com/books/a-textbook-of-physical-chemistry-volume-1/

CHAPTER 5 Quantum Mechanics — I 265

c2 (ﬂ)B 2n{(n+ D'} _ (395)
27 (n—101-1)!
or
o (22)3 (n—1-1)! (395)
—J\nay/ [2n{(n+ D133

After using the value of normalization constant from above equation into equation (388), we get

oo (zz )3 -t-D] T DRt DR (396)
@)= 1G] [Zntms e ¢ P L -l-1-RI@+1+k

2Zr (397)

k
2713 (n—1—1) 7r 2z k=n-1-1 (_1)k+1[(n+ MK (_)
- J(E) [W]'exP(_n_%)'<n_%) ' kZO -1 —1—k) 2+ ln-lofok)!k!

Which is the complete solution of R-equation.

Table 3. Some of the initial radial wave functions in terms-of distance from-the center of the nucleus for
the*hydrogen atom and other hydrogen-like species.

n / Radial wave function (R, ;)
1 0 3/2
Rl h 2 (i) e_Zr/aO
, o
2 0 3/2
R, o :L<£) (2_£>Q—ZT/2%
% 2v2 \ag Qo
2 1 3/2
Ror = (2)" (E) e
246 \ag Qg
3 0 2 (ZN\? Zr Zr\?
Ryg=—— (—) (27 —-18— -2 (—) ) e~Zr/3a0
81v3 \dp Qo Qo
3 1 3/2 2
Ryy = — (E) (6 (ﬁ) _ (ﬁ) )/
" 816 \ag Qo Qo
3 2 3/2 3/2 2
R3 5 = 1 (£> (Z_T> — (ﬁ) e—Zr/3a0
’ 81v30 \aq Qo Qo
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The total wavefunction: After solving the ¢-, 6- and r-dependent equations, we have @,,(9), @;,(6) and R, (r)
functions. Now, recall the total wave function that depends upon all the three variable i.e.

lpn,l,m(r» 9» ¢) = lpn,l(r) X lpl,m (9) X 1/Jm ((,b) (398)

After putting the values of @,,(¢), ©;,(0) and R, (r) from equation (397) in equation (398), we get

l/)n,l,m(rr 0, d)) = Rn,l- Ql,m- b, (399)
400
2713 (n—1—1)! 7r N k=n-1-1 (— 1)k+1[(n+l)l] (ZZ:)') ( )
- (n_ao) m]'eXp( na0> (na0> L G-l-1-RI@+ 1+

QL+ DU-m)! 1
x\/ RS P} (Cose)x\/;e ¢

Which is the complete expression for all the quantum mechanical states.of a single electron around the nucleus.

Table 4. Some of the initial total wave functions for the hydrogen-atom and other hydrogen-like species.

n I m Total wave function (¥5,7 )
1 0 0 3/2
lploo:%(E) p e o8
0, 7\,
2 0 0 3/2
Yr00 = i(i) (2 _ﬁ> e Zr/2ag
3 4fr Aay Ay
2 1 0 1™ 7 7 \3R
s o= —<—) e~%7/260 y Cosh
T4\ do
2 1 +1 e AN )2 "
¢21+1=—(—) e~4T/%% Sinf e™"
T i \ag
3.0 0 2 (z>3/2 Zr N\ _srjza, L
=—|(— 27—18——2(—) e~ 0, ——
V300 813 \ag Qo Qo Vamr
L @ (- ) et
=—|(— ——1—] Je . |= Cos .—
31,0 816 \ag ao ao 2 21
31 +1 4 (2)3/2 6(zr) (ZT>2 /e, 3 i 1 v
¢3'1'i1_81\/6 o o P e - |3 iné. 27Te
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The eigenvalues of energy: Since the series G (p) consists of infinite number of terms, the function F(p)

becomes infinite at a very large value of £ i.e. infinite. Consequently, the function R(p) will also become

infinite if the number of terms are not limited to a finite value. Therefore, we must break off the series to a

finite number of terms which is possible only if the numerator in equation (381) becomes zero i.e.

l+1-24+k=0
or

A=l+1+k=n

(401)

(402)

Where n is the principal quantum number and can have values 1,2, 3.4 .... because / and k are integers always.

Now recall the value of A from equation (338) and then squaring both sides, we get

©272%e4

A= ha2

Also putting the value of a? from equation (338) in equation (403), we get

U272t 12724 12 WATS

AZ - = — = —
h*a? h* "2uE 2Eh?

M nzgeN ™y 4’

ratitdite Bdm +04 ndhe

Which is the same as given by the pre-wave-mechanical quantum theory.

(403)

(404)

(405)

Figure 14. The energy level for various quantum mechanical states of the hydrogen atom.

It is also worthy to note that the total number of wave functions that can be written for a given value of n are

n?, and therefore, we can say that the degeneracy of any energy level is also n?.

Buy the complete book with TOC navigation, Copyright © Mandeep Dalal
high resolution images and

no watermark.

DALAL
INSTITUTE


https://www.dalalinstitute.com/books/a-textbook-of-physical-chemistry-volume-1/

268 A Textbook of Physical Chemistry — Volume |

¢ Principal, Azimuthal and Magnetic Quantum Numbers and the Magnitude
of Their Values

The Schrodinger wave equation for hydrogen and hydrogen-like species in the polar coordinates can
be written as:

) 61/)) 1

rZ|or (r or Sind 00 (Sm@

oy 1 0%y| 8mPu[ Ze? (406)
ae) tSimraagz|t T \ET )P =0

After separating the variables present in the equation given above, the solution of the differential equation was
found to be

lpn,l,m(r' 0, ¢) = Rn,l- Ql,m- b, (407)

408
2z -1 1) zry 2zmt TG CDF M+ DY (fuer) o
- (E) 2n{(n+l)!}3]'eXp( na0> (na0> kZ m—1—1-k) 2L+ 1+k)k!

0

IL+DA-m)! 1,
x\/ OS] .P"(Cos 0) x \E ¢

It is obvious that the solution of equation (406) contains three discrete (n, /, m) and three continuous (7, 8, ¢)

variables. In order to be a well-behaved function, there are some conditions over the values of discrete variables
that must be followed i.e. boundary conditions. Therefore, we can conclude that principal (7), azimuthal (/)
and magnetic (m) quantum numbers are obtained as a solution of the Schrodinger wave equation for hydrogen
atom; and these quantum numbers are used to define various quantum mechanical states. In this section, we
will discuss the properties and significance of all these three quantum numbers one by one.

» Principal Quantum Number

The principal quantum number is denoted by the symbol #; and can have value 1, 2, 3,4, 5.....c0. The
label “principal” is allotted because valid values of / and m can be defined only after defining an acceptable
value of n. Some of the most important significances of the principal quantum number are given below.

1. The energy of an electron in hydrogen-like systems: The principal quantum number gives the energy of
the electron in all hydrogen and hydrogen-like species by the following relation.

uZ*e* (409)

En= e

Where (4 is the reduced mass of the system while e represents the electronic charge. The symbol Z represents
the nuclear charge of the one-electron system. Now since main shells are nothing but the classification of
different quantum mechanical states of electron on the basis of energy only, we can also say that n tells about

the main shells in the modern wave mechanical model of the atom.
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2. Degeneracy in hydrogen-like systems: Since the total number of wave functions that can be written for a
given value of n are n°, we can say that the degeneracy of any energy level is also »#°. In other words, we can
say that because the energy depends only upon the value of 7, all wave functions with the same value of » must
possess the same energy. For instance, if we n = 2, a total of four wave-functions can be written i.e.
Y200 ¥2,10 WP2,1,+1 and P, 1 _;. Owing to the same value of n, all of these states are bound to have the same

energy, and thus, are degenerate.

3. The maximum number of electrons per unit cell: Since two electrons can have the same set of principal,
orbital and magnetic quantum numbers via opposite spins, the maximum number of electrons per unit cell will
be 27 i.e. the double of the degeneracy. For instance, if we n = 2, the maximum number of electrons that can
be filled in the second main shell is 2 x 22 = 8. Similarly, if we n = 3, the maximum number of electrons
that can be filled in the third main shell is 2 x 3% = 18.

4. Spectra of elemental hydrogen: In order to understand this concept, recall the energy expression for the
hydrogen atom i.e.
me* ArPme* (410)

R ST etz

In the SI system, the above equationneeds to be corrected for permittivity factor (4me,) i.e.

4r?m et 4¥mie* 411)
T 2 nZh? (4me;)? gl 32 wAn2h?e? REES

or

. e (412)

E, ==————Joules
% 8n2h2e? /

Converting Joules into cm ™! (dividing by-/Ac) the above equation takes the form

Goo__me R (413)

V, = — cm =
" 8n2h3c &2 n?
Now the selection rules for electronic transitions are
An = anything and Al = +1 (414)

This means that electron can move from s to p-orbital only; and all s—s, p—p, d—d and f~f transitions are Laporte
forbidden. Now assume that electron shows a transition from an initial quantum mechanical state (#:) to the

final quantum mechanical state (n2). The energy of absorption can be formulated as:

o _ R R 1 (415)
AV =V, =V, = |- |~ |~ |cm

or
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P 1 1
V=R|(=—-—=
ni n3

) cm™1t

(416)

The above equation can also be used to determine the wavenumber of the emission spectral line of the hydrogen

atom. All the possibilities and corresponding series are given below.

0 4
4s v % 4p —w— 4d 4f
3s ¥ % 3p .-y 3d
," 2 sz2e”
2s '."’,‘ = 2p
L
L
0!
l' Il ! >\
i &
o )
—0.5R e o
. "I
‘ I,
hYs
¥,
h
"
o
"
"
o
’l
—1.0 R ls ——

Figure 15. Energy level-diagram of the-hydrogen-atomin the units-of Rydberg constant.

At this stage, we must consider all the possibilities that,may_arise from the transitioning of the electron from
different quantum mechanical states. These transitions are grouped in various series labeled as Lyman, Balmer,

Paschen, Brackett and Pfund series.

Table 5. Different spectral series in the hydrogen atom.

Series name Lower state (1) Higher state () Region
Lyman 1 2,3,4,5,....0 uv
Balmer 2 3,4,5,6,....0© Visible
Paschen 3 4,5,6,7,....0 Near IR
Brackett 4 5,6,7,8,....© Mid IR
Pfund 5 6,7,8,9,....0 Far IR
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» Azimuthal Quantum Number

The azimuthal quantum number is denoted by the symbol /; and can have value n—1, n—2, n-3.....0.
The label azimuthal quantum number is also called as “angular momentum quantum number” because the
values of / also govern the orbital angular momentum of the electron in a particular quantum mechanical state.
Some of the most important significances of the principal quantum number are given below.

1. Orbital angular momentum of the electron: The azimuthal quantum number gives the angular momentum
of the electron in all hydrogen and hydrogen-like species by the following relation.

<L>= ’% l/)n,l,m(r; 0) d)) z lpn,l,m (T', 9' ¢) (417)

= /Il + 1)% (418)

After looking at the equation (418), it is ‘Obvious, that it’s only the ‘/* quantum number that controls the
magnitude of the orbital angular momentum quantum number. Furthermore, owing to the quantized nature of

‘’ quantum number, the angular momentum of an-electron.in an.atom is also quantized. For instance, if we
use /=0, 1, 2, 3 in equation (418), we will get 0, \237/6 and v/ 12 units’of angular momentum, respectively.
2. Subshells in the main shell: The azimuthal quantum number can also be used to classify different quantum

mechanical states on the basis of orbital-angular momentum. In other words, subshells are nothing but the

classification degenerate quantum mechanical states on the basis of angular momentum.

= p \E unit
i %)
0 unit N2 umt PR
A
—— .4 =
/3 V310 V3 V3 1,180 3R V32 A W3242 W32 2
&>‘3 V30,0 V3,1 ,+1 V00" Y320 : + _1.5eV
Q
k3
V200 ¥2.1,0 Y2,1-1 V2,141
A N p —-34¢eV
) Y
unit ;
0 \/5 unit
. ¥1,0,0
0 unit { —= ~13.6eV

Figure 16. Energy level diagram of the hydrogen atom with further classification.
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3. Shape and number of angular nodes in atomic orbital: The angular momentum quantum number, /, also
controls the number of angular nodes that pass through the nucleus. An angular node (planar or conical) is
observed when the angular part of the wave function passes through zero and changes sign.

z-axis A ¥-axis
: 7
' .
(<) v
SRR A -
T x-axis
T :
'

Is (1=0) 2p(I=1)
No. of angular nodes = 0 No. of angular nodes = 1
X - axis
o2 SSp
N D A DA
3d(l=2)
Noyof angular nodesy= 2

Figure 17 Different orbitalsand thecorresponding angulat nodes.

4. The energy of different subshells in multi-electron-atoms: In hydrogen and H-like atoms (i.e. one-
electron systems), the energy levels depend only upon the principal quantum number. However, these energy
levels also split according to the magnitude of /.as.well.-Quantum states of higher / are placed above than the
states with lower /. For instance, the energy of 25 orbital isdower than 2p, 3d exists at higher position than 3p.

l\'/
/2/ P
S 2p
/3s/3p/
/ / /3d

4

Figure 18. The energy pattern of different subshells in multi-electron atoms.

DALAL

Buy the complete book with TOC navigation, ;
high resolution images and Copyright © Mandeep Dalal INSTITUTE

no watermark.


https://www.dalalinstitute.com/books/a-textbook-of-physical-chemistry-volume-1/

CHAPTER 5 Quantum Mechanics — I 273

» Magnetic Quantum Number

The magnetic quantum number is denoted by the symbol m, and can have values +/ to —/ in unit steps.
In other words, the quantum number m is nothing but the allowed effects of orbital angular momentum in the
z-direction. The label “magnetic quantum number” arises because m affects the energy of the electron in an
externally applied magnetic field. In the absence of such a field, all spherical harmonics corresponding to the
different arbitrary values of m will be equivalent. Some of the most important significances of the principal

quantum number are given below.

1. The orientation of orbital angular momentum: The azimuthal quantum number gives the angular
momentum of the electron in all hydrogen and hydrogen-like species by the following relation:

h (419)
Ly=yl(l+1)—
1 (l+1 o
Sincel =0,1,2,3,4 ... ... (n — 1) etc., the quantum mechanically-allowed values of orbital angular momentum

(in the units of h/2m) are given below.

Ly = [0(0 + 1) unit = 0 Unit (420)

Lyi=af1(d4-1)unit.=/2unit (421)
15 = J2(2 +4)unit =+/6 unit (422)
Ly = y/3(31%11)junit = 1/12 nnit (423)

However, there is boundary condition in quantuim mechanics;that says that only integral effects are allowed
reference direction if the angular momentum is generated by integral quantum number and half-integral effects

are allowed in reference direction if the momentum is generated by half-integral quantum number.

Since, L, = L Cos 0, /2 units of orbital angular momentiim cannot orient itself along z-axis because

this makes 6 = 0°, and since Cos 0 = 1, ZZ = L i.e. orbital angular momentum effect along the z-axis is also
1.414 unit which is not allowed quantum mechanically. The effects of angular momentum allowed in the z-
direction are +1, 0, —1; for which angles required are determined as follows.

1 424
+1=+2Cos® = 6 =Cos™'—==45° (424)
V2
0
0=+V2Cos® = 0 =Cos 1—=90° (425)
V2
-1 42
—-1=+2Cos8 = 6=Cos™'—=135° (426)
V2
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Hence, we can say that in order to be allowed, the 1.414 units of orbital angular momentum must orient itself
only at 45°, 90° and 135° in space from reference direction (z-axis in this case). Since the orientation of angular

momentum can orient itself in any direction from the z-axis as far as the effective orbital angular momentum
+1 unit along z-direction; therefore, we should use a cone around the same at 45°. The same is true for 0 and

—1 effects with 90° and 135°, respectively.

(zero orbital angular momentum)

. V12 unit

e

>\12 unit

V12 unit
> V12 unit

V12 unit

V12 unit

V12 unit

Figure 19. The space quantization of orbital angular momentum of an electron for /=0, 1, 2 and 3 states.

It is also worthy to mention that all the orientations of orbital angular momentum are degenerate in the absence

of any externally applied magnetic field.
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2. The energy of different orientations: The probability of different orientations of orbital angular
momentum, and also the corresponding magnetic fields, are same. However, after applying the magnetic field

along the z-direction, the situation will not be the same.

The orientation with a maximum negative value of orbital angular momentum along the z-axis will
have magnetic dipole aligned along the applied magnetic field, and thus, will be most stable. Conversely, the
orientations with the maximum positive value of orbital angular momentum along the z-axis will have
magnetic dipole aligned opposite to the applied magnetic field, and thus, will be least stable. Likewise, the
orientations with angular momentum component in between will also have intermediary energies in this case.

Z-axis
---------- _I_i- .-.-.-.-.-.-...-.-'.-‘. '\/Bunit -_~~~
e 9
< semefeear ¥t o3 N6 unit Tt
__________________________ +1
>
--------- 0= - 0 oy
= »\6 tmif - - =542 - g
_____________________________ &
-1
------------------------ - : -‘___—"_
S ol (Vs e £ oL TR |
____________________ »
e b TATTUIWWA da lmlen st

Figure 20. Different orientations of the orbital angular.momentum of an electron in a d-subshell and
corresponding energies in'the applied magnetic field.

To understand this, consider the typical case of d-subshell. The orbital angular momentum for the
corresponding electron can be obtained using equation (419) i.e.
(427)

h
L=y2@+1D -

[ = \/gi (428)
21

The allowed effects of orbital angular momentum in the z-direction are +2, +1, 0, —1, —2 in the units of 4/2x.
Therefore, each spectral line arising from the transition to the d-subshell will split in a quintet in the presence

of the externally applied magnetic field.
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¢ Probability Distribution Function

The probability distribution function is the behavior of y? at various points around the nucleus as a
function of distance » from the nucleus. The plots of such functions are also called as the probability
distribution curves. Nevertheless, since it is only the radial part (R, ;) that varies with the distance from the
nucleus, the graphs of y? must behave in the same manner. To understand this more precisely, consider the
plot of the first two quantum mechanical states of an electron in a hydrogen atom.

»  Probability Distribution of Y1 g ¢ State (Is Orbital)

In order to understand the probability distribution function of the electron in the ground state of the
hydrogen atom, recall the mathematical expression for the same i.e.

1 714\ (429)
Y100 = —(—) e/
7 Wm\ag
Squaring both sides, we get
430)
2 - e—Zr/ao (
l/)1,0,0 T[ag,

It is obvious from the equation (429, 430) that the pre-exponential part is simply a constant and variation
depends only upon the exponential part.

Figure 21. The variation of electron density vs distance from the center of the nucleus in 1s orbital.

Hence, it can be concluded that the density of the electron wave is highest at the center of the nucleus and
decreases as the distance from the center of the nucleus increases, and becomes zero only at infinite.
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»  Probability Distribution of Y, ¢ ¢ State (2s Orbital)

In order to understand the probability distribution function of an electron in the 2s state of the
hydrogen atom, recall the mathematical expression for the same i.e.

3/2
Y200 =L(i> (2 —L)e_r/zao (555
” 4/t \ag Qg
Squaring both sides, we get
2 r )2 —r/a (432)
=— (2 —— 0
Y200 16maj ( a, ¢

It is obvious from the equation (431, 432) that the pre-exponential part is simply a constant and variation
depends only upon the exponential part.

2,0,0

B
r

Figure 22. The variation of electron density vs distance from the center of the nucleus in 2s orbital.

Hence, it can be concluded that the density of electron wave is non zero at the center of the nucleus and
decreases as the distance from the center of the nucleus increases, and becomes zero at r = 2a,. Now since
the wave function changes sign after 2a,, the density of electron wave after that increases first and then
decreases exponentially and finally becomes zero at infinite distance. Now it’s quite confusing because we
have been told that the electron cannot reside within the nucleus and the probability of finding the electron

inside the nucleus is almost zero, meaning that there must be something else that also governs the probability.
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+* Radial Distribution Function

The radial distribution function is the behavior of R,lel. 4mr?dr as a function of distance r from the
center of the nucleus. These plots solve the problem posed by the simple “probability distribution curves”
which suggested that the probability of finding the electron must be highest at the center of the nucleus in the
ground electronic state. In the radial distribution plots, we assume that the probability of finding the particle at
a distance r from the nucleus depends not only upon the density of electron wave but also varies with the
magnitude of the volume of the spherical shell of dr thickness at the same distance. This is quite rational
because the 7 can be in any direction around the nucleus.

Consider that the space around the nucleus is divided into an infinite number of concentric shells of
thickness dr. Now though the electron density will show a decrease with increasing r, the volume of the
concentric shells will increase. More volume at distance » means more the chances of finding the electron at
same. The two effects will try to counter each other, and therefore, the resultant probability at distance » must
be the multiplication of the two effects i.e.

Radial probability = l/),zl,l,m X AVspen (433)

Nevertheless, since it is only the radial part (R, ;) that varies with the distance from the nucleus, the above

expression for simplicity can be reduced to
Radial probability = R2; X dVgpey (434)

Now as we have already derived the mathematical expression of radial wavefunction hydrogen atom already
in this previously, the only thing we need is the mathematical expression of the volume element also.

Figure 23. The depiction of a concentric shell of thickness dr around the nucleus of a hydrogen atom at a
distance 7.
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The volume of the shaded portion (spherical shell of thickness dr) can be obtained subtracting the volume of
the inner sphere from the outer sphere i.e.

4 4
AV ==n(r+dr)® —snr3 (435)

3 3

4 4
= §n(r3 +dr3 + 3r?%dr + 3r dr?) — §nr3 (436)
4 4 4

= §nr3 + §ndr3 + 4nr?dr + 4nr dr® — §nr3 (437)
(438)

4
dV = gndr?’ + Amrdr + 4nr dr?

Since dr is very small, the terms involving square and cube of dr can be neglected for simplicity. All this leaves
us with only one term i.e. dV = 4nr?dr. After using the value of«dV in equation (434), we get

Radialprobability = RE )/ Xo4mr?dr, (439)

To understand this more precisely, consider the plot for the ground quantum mechanical state of an electron in
a hydrogen atom i.e. 1s orbital.

» Radial Probability Distribution Curve for Ground State of Hydrogen Atom

The valid values of n} / and m that can be put'in'the general form of'the hydrogenic wavefunction to
obtain ground state are 1, 0 and 0, respectively. Therefore, we can start by writing the mathematical expression
for the same i.e.

1,312 (440)

R =2(—) ~Tigo
1,0 aq e

The probability distribution function can be obtained by squaring equation (440) i.e.

Ry = 5 e~2rfa 4D
, a(?),

After multiplying the “probability distribution function” with “volume element”, the expression for the “radial

distribution function” can be formulated. Mathematically, we can say that

4 442
P(r) = —3e‘2T/a0 X 4mr?dr (442)
a

0
It is obvious from the equation (442) that probability will become zero if we put 7= 0 (47r?dr = 0). Now, if
we increase the r, the radial probability will first increase due to increasing volume element, attaining maxima;
and then it will start declining due to the dominance of Rfo part. In other words, the density of electron-wave

decreases exponentially but the volume of the concentric shell increases continuously.
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Rio X 4 dr

' 35 =0.53 &

—_—
Figure 24. The variation of radial probability as*a function of » (1s orbital).
In order to find the radius of maximum probability, we need to put dP/dr equal to zero. It has been found that

the radius of maximum probability-will come out to be 0.53%10 " m, which is exactly equal to the radius of
the first Bohr orbit (ao).

» Radial Probability Distribution Curves for Other Hydrogenic Wavefunctions

The other valid sets of 7z, / can be put in the general form of radial part of the wavefunction, to obtain

R,Zl'l, and hence the corresponding“radial-distribution-functions™:

28
P(r) L/\ P(r)
—_—
3s 3p
i /\/\ ) |/\/\ P(r)
—_— > —>r

Figure 25. The variation of radial probability as a function of distance from the center of the nucleus.

o

P

3d

—_—
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¢ Shape of Atomic Orbitals (s, p & d)

The wave mechanical model of atom says that there is a non-zero probability of finding the electron
almost everywhere in space excepting the angular and radial nodes. This means that primitive diagrams that
depict the orbital shapes are intended to describe the region encompassing 90—95% probability density. In a
typical drawing of orbital, we first plot the radial wave function and the angular part is superimposed. The
shapes of some typical orbitals are discussed below.

» Shape of s-Orbitals

In order to draw the shape of s-orbital, we first need to recall the radial part of the same and then we
will have to superimpose the angular part. For instance, the radial part of 1s orbital is

1,3/2 (443)
Rio=2 (—) e~"/a0

, aq
It is obvious from the equation (443) that the radial part of the wave function has the largest magnitude when
r =0, and it decreases as we move away from the nucleus. The function will become zero only at infinite
distance and will never change its sign. All this leads to a spherical-shaped cloud without any radial node. The
angular part of every s-orbital is

1 444
YO 0= —F7—= 028 ( )
T WAm

Hence, after multiplying radial wave function by a constant value of the angular part, the magnitude of function
at all the points in space will reduce to 28% of the initial value.

A z A
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<

ﬂ- N /l- +

]
=
Q
|
=
+
|
+
=Yy

Figure 26. The shape of some lower energy s-orbitals.

Similarly, the shapes of some other s-orbitals are also given below to explain the concept more precisely. It is

worthy to mention that the plots are easy to draw if we treat radial and angular parts consequently.
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» Shape of p-Orbitals

In order to draw the shape of p-orbital, we first need to recall the radial part of the same and then we
will have to superimpose the angular part. For instance, the radial part of 2p orbital is

3/2 445
R“:L(L) (D) errze (445)
’ 2/6 \ag Qo

It is obvious from the equation (445) that the radial part of the wave function has the zero magnitudes when r
= 0; and it increases as we move away from the nucleus, reaches a maximum, and decreases afterward. The
function becomes zero only at infinite distance and will never change its sign. All this leads to a spherical-
shaped cloud without any radial node. The angular part of p-orbitals are

)2 : Cos 6 !
= 1="Cos 6.—

2 1 & (447)
i = ESmH. %e—

Hence, the full plot for p.-orbital is obtammed after multiplying radial wave function by angular part given by

(446)

equation (446); and the sign of function above the xy-plane will remain positive whereas a negative sign will
be obtained below xy-plane. Similatly, we can obtain the three-dimensional plots for p, and p, by multiplying
equation (445) by equation (447).

A A

z Z

]

]

2px 2py op;

Figure 27. The shape of 2p-orbitals.

Similarly, the shapes of some other p-orbitals are also given below to explain the concept more precisely. It is

worthy to mention that the plots are easy to draw if we treat radial and angular parts consequently.
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5 Dy 5p y Sp:

Figure 28. The shape of some 3p, 4p and 5p orbitals.
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» Shape of d-Orbitals

In order to draw the shape of d-orbital, we first need to recall the radial part of the same and then we
will have to superimpose the angular part. For instance, the radial part of 3d orbital is

&)

It is obvious from the equation (448) that the radial part of the wave function has the zero magnitudes when r

3/2 3/2

2
~ (E) e (149)
Qo

Rz = sm=(2)
327 814/30 \ag

= 0; and it increases as we move away from the nucleus, reaches a maximum, and decreases afterward. The
function becomes zero only at infinite distance and will never change its sign. All this leads to a spherical-
shaped cloud without any radial node. The angular part of d-orbitals are

(449)
5 , 1
YZ,O = g (3COS O 1)E
¥ 2 o (450)
Yoyp= TSm@Cos 0- 2—7Te—
15 & 2 1 ti2¢ @b
Y2'i2 = 1—6‘ ST ad) E;e_

Hence, the full plot for ¢.’-orbital is obtained after multiplying radial wave function by angular part given by
equation (449); and the sign of function in the xy-plane will become negative whereas a positive sign will be
obtained in two opposite lobes along z-axis. It is.also worthy to note that the function becomes completely zero
in two conical surfaces (above and below) before changing its sign. Similarly, we can obtain the three-
dimensional plots for p, and p, by multiplying equation (448) by equation (450, 451).
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Figure 29. Continued on the next page...
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7 ol o 3d.2

Figure 29. The shape of 3d-orbitals.

Similarly, the shapes of some other d-orbitals are also given below to explain the concept more precisely. It is
worthy to mention that the plots are easy.to draw if-wetreat radial and angular parts consequently.

A
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Figure 30. The shape of 4d orbitals.
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It is also worthy to mention that the radii of maximum probability for 44 orbitals are larger than that
of 3d orbitals. The same is true for s and p orbitals i.e. radius of maximum probability of s and p orbitals follow
the order 3s > 2s > 1s and 4p > 3p > 2p, respectively.
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% Problems
Q 1. Derive and discuss the Schrodinger wave equation for a particle of mass m trapped inside a cubical box
with side a. Provided that the potential inside the box is zero while outside the box is infinite.
Q 2. Discuss the concept of the degeneracy of quantum mechanical states in a 3D box.
Q 3. What is the zero-point energy of a simple harmonic oscillator? How does it vary with force constant?

Q 4. Derive and discuss the Schrodinger wave equation for a diatomic rigid rotator. Also, draw the energy
level diagram for the same.

Q 5. Define space quantization with special reference to diatomic rigid rotator.

Q 6. What is the difference between the radial and angular wave function for hydrogen atom? Write down both
parts for 3d,* orbital.

Q 7. What are quantum numbers in the modern wave mechanical model of the atom? Also, discuss the main
significance of the principal quantum number.

Q 8. Write down a short note on “probability distribution functions”.

Q 9. What are “radial distribution functions”? Also, explain how you would determine the radius of maximum
probability for 1s orbital of the hydrogen atom.

Q 10. What are the formulas to find the number of angular and radial nodes?

Q 11. Draw and discuss the shape of 4d., and 3d.” in detail
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