Energy of Rigid Rotator

The energy of a rigid rotator can be understood only after considering its classical and quantum mechanical aspects. In the previous section of this chapter, we discussed the classical and quantum mechanical nature of the rigid rotator. Consider a system two masses \(m_1 \) and \(m_2 \) joined by a rigid rod of length \(r \). Now assume that this dumbbell type geometry rotates about an axis that is perpendicular to \(r \) and passes through the center of mass.

The energy of Classical Rigid Rotator

If \(v_1 \) and \(v_2 \) are the velocities of the mass \(m_1 \) and \(m_2 \) revolving about the axis of rotation, the total kinetic energy \((T) \) of the rotator can be given by the following relation.

\[
T = \frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2
\]

(215)

Since we know that linear velocity \(v \) is simply equal to the angular velocity \(\omega \) multiplied by the radius of rotation \(r \) i.e. \(v = \omega r \), the equation (215) takes the form

\[
T = \frac{1}{2} m_1 (r_1 \omega)^2 + \frac{1}{2} m_2 (r_2 \omega)^2
\]

(216)

\[
T = \frac{1}{2} (m_1 r_1^2 + m_2 r_2^2) \omega^2
\]

(217)

\[
T = \frac{1}{2} I \omega^2
\]

(218)

Where \(I \) is the moment of inertia equal with definition \(I = \sum m_i r_i^2 \). Furthermore, the value of \(I \) can also be written as

\[
I = \left(\frac{m_1 m_2}{m_1 + m_2} \right) r^2
\]

(219)

\[
I = \mu r^2
\]

(220)

Where \(\mu = m_1 m_2 / (m_1 + m_2) \) is the reduced mass of the rigid diatomic system. After multiplying and dividing the rotational kinetic energy by \(I \) i.e. equation (218), we have

\[
T = \frac{I^2 \omega^2}{2I} = \frac{(I \omega)^2}{2I} = \frac{L^2}{2I}
\]

(221)

Where \(L \) is the angular momentum of the rotator. It is clear from the above equation that the kinetic energy of a classical rotator can have any value because the value-domain of angular velocity is continuous. Moreover, as now the external force is working on the rotator, the potential can be set to zero. Therefore, we can conclude that the total energy of a classical diatomic rigid rotator is given by equation (221).
The energy of Quantum Mechanical Rigid Rotator

In order to understand the energy of a quantum mechanical rigid rotator, recall the Schrodinger wave equation for the same first i.e.

\[
\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \psi}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial \psi}{\partial \phi} + \frac{8\pi^2 I E \psi}{\hbar^2} = 0
\]
(222)

Where \(\psi \) is the mathematical expression defining various quantum mechanical states depending upon two variables \(\theta \) and \(\phi \). During the course of the solution of the above equation, a constant \(\beta \) is defined for simplicity as given below.

\[
\beta = \frac{8\pi^2 I E}{\hbar^2}
\]
(223)

However, the boundary conditions that keep the function single-valued, continuous and finite; also proved that the constant \(\beta \) must satisfy the following condition also.

\[
\beta = l(l + 1)
\]
(224)

Where \(l = 0, 1, 2, 3, 4 \) etc. After equating the value of \(\beta \) from equation (223) and equation (224), we get

\[
\frac{8\pi^2 I E}{\hbar^2} = l(l + 1)
\]
(225)

\[
E_l = \frac{\hbar^2}{8\pi^2 l} l(l + 1)
\]
(226)

Hence, unlike the classical counterpart, the energy levels of quantum mechanical rigid rotators are discontinuous.

Figure 8. The energy level diagram of the diatomic rigid rotator in units of \(\hbar^2/8\pi^2 l \).
Want to study chemistry for CSIR UGC - NET JRF, IIT-GATE, M.Sc Entrance & IIT-JAM, UPSC, ISRO, IISC, TIFR, DRDO, BARC, JEST, GRE, Ph.D Entrance or any other competitive examination where chemistry is a paper?

Are you interested in books (Print and Ebook) published by Dalal Institute?

Want video lectures in chemistry for CSIR UGC - NET JRF, IIT-GATE, M.Sc Entrance, IIT-JAM, UPSC, ISRO, IISC, TIFR, DRDO, BARC, JEST, GRE, Ph.D Entrance or any other competitive examination where chemistry is a paper?

Postgraduate Level Classes (NET-JRF & IIT-GATE)
Admission
Regular Program
Test Series
Distance Learning
Result

Undergraduate Level Classes (M.Sc Entrance & IIT-JAM)
Admission
Regular Program
Test Series
Distance Learning
Result

A Textbook of Physical Chemistry – Volume 1

“A Textbook of Physical Chemistry – Volume 1 by Mandeep Dalal” is now available globally; including India, America and most of the European continent. Please ask at your local bookshop or get it online here.

Join the revolution by becoming a part of our community and get all of the member benefits like downloading any PDF document for your personal preview.

Sign Up
Table of Contents

CHAPTER 1 .. 11

- **Quantum Mechanics – I** .. 11
 - Postulates of Quantum Mechanics .. 11
 - Derivation of Schrodinger Wave Equation... 16
 - Max-Born Interpretation of Wave Functions .. 21
 - The Heisenberg's Uncertainty Principle... 24
 - Quantum Mechanical Operators and Their Commutation Relations... 29
 - Hermitian Operators – Elementary Ideas, Quantum Mechanical Operator for Linear Momentum, Angular Momentum and Energy as Hermitian Operator ... 52
 - The Average Value of the Square of Hermitian Operators .. 62
 - Commuting Operators and Uncertainty Principle \((x & p; E & t)\) ... 63
 - Schrodinger Wave Equation for a Particle in One Dimensional Box .. 65
 - Evaluation of Average Position, Average Momentum and Determination of Uncertainty in Position and Momentum and Hence Heisenberg’s Uncertainty Principle.. 70
 - Pictorial Representation of the Wave Equation of a Particle in One Dimensional Box and Its Influence on the Kinetic Energy of the Particle in Each Successive Quantum Level .. 75
 - Lowest Energy of the Particle ... 80
 - Problems .. 82
 - Bibliography .. 83

CHAPTER 2 .. 84

- **Thermodynamics – I** .. 84
 - Brief Resume of First and Second Law of Thermodynamics.. 84
 - Entropy Changes in Reversible and Irreversible Processes ... 87
 - Variation of Entropy with Temperature, Pressure and Volume ... 92
 - Entropy Concept as a Measure of Unavailable Energy and Criteria for the Spontaneity of Reaction ... 94
 - Free Energy, Enthalpy Functions and Their Significance, Criteria for Spontaneity of a Process... 98
 - Partial Molar Quantities (Free Energy, Volume, Heat Concept) ... 104
 - Gibb’s-Duhem Equation .. 108
 - Problems ... 111
 - Bibliography ... 112
CHAPTER 3 .. 113

Chemical Dynamics – I .. 113

- Effect of Temperature on Reaction Rates ... 113
- Rate Law for Opposing Reactions of 1st Order and 2nd Order 119
- Rate Law for Consecutive & Parallel Reactions of 1st Order Reactions 127
- Collision Theory of Reaction Rates and Its Limitations ... 135
- Steric Factor .. 141
- Activated Complex Theory .. 143
- Ionic Reactions: Single and Double Sphere Models .. 147
- Influence of Solvent and Ionic Strength ... 152
- The Comparison of Collision and Activated Complex Theory 157
- Problems .. 158
- Bibliography .. 159

CHAPTER 4 .. 160

Electrochemistry – I: Ion-Ion Interactions .. 160

- The Debye-Huckel Theory of Ion-Ion Interactions ... 160
- Potential and Excess Charge Density as a Function of Distance from the Central Ion 168
- Debye-Huckel Reciprocal Length .. 173
- Ionic Cloud and Its Contribution to the Total Potential ... 176
- Debye-Huckel Limiting Law of Activity Coefficients and Its Limitations 178
- Ion-Size Effect on Potential .. 185
- Ion-Size Parameter and the Theoretical Mean - Activity Coefficient in the Case of Ionic Clouds with Finite-Sized Ions ... 187
- Debye-Huckel-Onsager Treatment for Aqueous Solutions and Its Limitations 190
- Debye-Huckel-Onsager Theory for Non-Aqueous Solutions 195
- The Solvent Effect on the Mobility at Infinite Dilution .. 196
- Equivalent Conductivity (λ) vs Concentration $C^{1/2}$ as a Function of the Solvent 198
- Effect of Ion Association Upon Conductivity (Debye-Huckel-Bjerrum Equation) ... 200
- Problems .. 209
- Bibliography ... 210

CHAPTER 5 .. 211

Quantum Mechanics – II ... 211

- Schrodinger Wave Equation for a Particle in a Three Dimensional Box 211
 CHAPTER 8 .. 390
Electrochemistry – II: Ion Transport in Solutions ... 390
 ❖ Ionic Movement Under the Influence of an Electric Field ... 390
 ❖ Mobility of Ions .. 393
 ❖ Ionic Drift Velocity and Its Relation with Current Density ... 394
 ❖ Einstein Relation Between the Absolute Mobility and Diffusion Coefficient 398
 ❖ The Stokes-Einstein Relation ... 401
 ❖ The Nernst-Einstein Equation ... 403
 ❖ Walden’s Rule .. 404
 ❖ The Rate-Process Approach to Ionic Migration .. 406
 ❖ The Rate-Process Equation for Equivalent Conductivity ... 410
 ❖ Total Driving Force for Ionic Transport: Nernst-Planck Flux Equation ... 412
 ❖ Ionic Drift and Diffusion Potential .. 416
 ❖ The Onsager Phenomenological Equations ... 418
 ❖ The Basic Equation for the Diffusion .. 419
 ❖ Planck-Henderson Equation for the Diffusion Potential ... 422
 ❖ Problems ... 425
 ❖ Bibliography ... 426

INDEX ... 427
Mandeep Dalal is an Indian research scholar who is primarily working in the field of Science and Philosophy. He received his Ph.D in Chemistry from Maharshi Dayanand University, Rohtak, in 2018. He is also the Founder and Director of "Dalal Institute", an India-based educational organization which is trying to revolutionize the mode of higher education in Chemistry across the globe. He has published more than 40 research papers in various international scientific journals, including mostly from Elsevier (USA), IOP (UK) and Springer (Netherlands).

Other Books by the Author

A TEXTBOOK OF INORGANIC CHEMISTRY - VOLUME I, II, III, IV
A TEXTBOOK OF PHYSICAL CHEMISTRY - VOLUME I, II, III, IV
A TEXTBOOK OF ORGANIC CHEMISTRY - VOLUME I, II, III, IV