Planck-Henderson Equation for the Diffusion Potential

The basic equation for diffusion potential is applicable only if the potential difference \((d\psi) \) is considered over a very small distance \((dx) \). However, the problem of obtaining an overall potential difference \((\Delta\psi = \psi^0 - \psi^l) \) that develops from \(x = 0 \) to \(x = l \) was still there.

This was overcome by Planck-Henderson equation which can be obtained by recalling the basic equation for diffusion first i.e.

\[
-d\psi = \frac{1}{F} \sum \frac{t_i}{z_i} d\mu_i
\]

(195)

Where \(t_i \) and \(z_i \) are the charge number of \(i \)th species whereas \(F \) represents the Faraday constant. Integrating equation (195), we get

\[
-\Delta\psi = \psi^0 - \psi^l = \frac{1}{F} \sum \int_{x=0}^{x=l} \frac{t_i}{z_i} \frac{d\mu_i}{dx} dx
\]

(196)

or

\[
-\Delta\psi = \frac{RT}{F} \sum \int_{x=0}^{x=l} \frac{t_i}{z_i} \frac{d ln a_i}{dx} dx
\]

(197)

or
At this stage, the things we need to evaluate the equation (198) are the concentration of all species in the interphase region, the variation of activity coefficient and transport number with concentration. For simplicity, the activity coefficients can be taken as unity and transport numbers as constant. In addition to these assumptions, the variation of concentration of \(i \)th species with distance is considered as linear i.e.

\[
c_i(x) = k_i x + c_i(0)
\] (199)

For constant \(k_i \), differentiate above equation i.e.

\[
\frac{dc_i}{dx} = k_i = c_i(l) - c_i(0)
\] (200)

Now using equation (199, 200) in equation (198), we get

\[
-\Delta \psi = \frac{RT}{F} \sum_i t_i \int_{x=0}^{x=l} \frac{dz_i c_i}{dx} dx
\] (201)

or

\[
-\Delta \psi = \frac{RT}{F} \sum_i t_i \int_{x=0}^{x=l} \frac{k_i}{z_i c_i(0) + k_1 x} dx
\] (202)

or

\[
-\Delta \psi = \frac{RT}{F} \sum_i t_i \int_{x=0}^{x=l} \frac{dz_i}{z_i} \ln \left(\frac{k_i x + c_i(0)}{k_1 x + c_i(0)} \right)
\] (203)

or

\[
-\Delta \psi = \frac{RT}{F} \sum_i t_i \frac{c_i(l)}{c_i(0)} \ln \frac{c_i(l)}{c_i(0)}
\] (204)

Which is the general form of the Planck-Henderson equation for diffusion potential. Using \(c_+ = c_- = c \) and \(z_+ = z_- = z \) for \(z \): \(z \) electrolyte, we have

\[
-\Delta \psi = \frac{RT}{zF} (t_+ - t_-) \ln \frac{c_i(l)}{c_i(0)}
\] (205)

Furthermore, putting \(t_+ + t_- = 1 \), the equation (205) takes the form
\[-\Delta \psi = \frac{RT}{zF}(2t_+ - 1) \ln \frac{c_i(l)}{c_i(0)}\]

(206)

Which is the another form of Planck-Henderson equation for simple systems.
Home: https://www.dalalinstitute.com/
Classes: https://www.dalalinstitute.com/classes/
Books: https://www.dalalinstitute.com/books/
Videos: https://www.dalalinstitute.com/videos/
Location: https://www.dalalinstitute.com/location/
Contact Us: https://www.dalalinstitute.com/contact-us/
About Us: https://www.dalalinstitute.com/about-us/

Postgraduate Level Classes
(NET-JRF & IIT-GATE)
Admission
Regular Program
Distance Learning
Test Series
Result

Undergraduate Level Classes
(M.Sc Entrance & IIT-JAM)
Admission
Regular Program
Distance Learning
Test Series
Result

A Textbook of Physical Chemistry – Volume 1
“A Textbook of Physical Chemistry – Volume 1 by Mandeep Dalal” is now available globally; including India, America and most of the European continent. Please ask at your local bookshop or get it online here.
READ MORE

Join the revolution by becoming a part of our community and get all of the member benefits like downloading any PDF document for your personal preview.

Sign Up
Table of Contents

CHAPTER 1

- Quantum Mechanics – I ... 11
 - Postulates of Quantum Mechanics ... 11
 - Derivation of Schrodinger Wave Equation .. 16
 - Max-Born Interpretation of Wave Functions .. 21
 - The Heisenberg’s Uncertainty Principle ... 24
 - Quantum Mechanical Operators and Their Commutation Relations .. 29
 - Hermitian Operators – Elementary Ideas, Quantum Mechanical Operator for Linear Momentum, Angular Momentum and Energy as Hermitian Operator ... 52
 - The Average Value of the Square of Hermitian Operators ... 62
 - Commuting Operators and Uncertainty Principle (x & p; E & t) ... 63
 - Schrodinger Wave Equation for a Particle in One Dimensional Box 65
 - Evaluation of Average Position, Average Momentum and Determination of Uncertainty in Position and Momentum and Hence Heisenberg’s Uncertainty Principle .. 70
 - Pictorial Representation of the Wave Equation of a Particle in One Dimensional Box and Its Influence on the Kinetic Energy of the Particle in Each Successive Quantum Level .. 75
 - Lowest Energy of the Particle ... 80
 - Problems ... 82
 - Bibliography ... 83

CHAPTER 2

- Thermodynamics – I .. 84
 - Brief Resume of First and Second Law of Thermodynamics .. 84
 - Entropy Changes in Reversible and Irreversible Processes .. 87
 - Variation of Entropy with Temperature, Pressure and Volume ... 92
 - Entropy Concept as a Measure of Unavailable Energy and Criteria for the Spontaneity of Reaction ... 94
 - Free Energy, Enthalpy Functions and Their Significance, Criteria for Spontaneity of a Process ... 98
 - Partial Molar Quantities (Free Energy, Volume, Heat Concept) ... 104
 - Gibb’s-Duhem Equation ... 108
 - Problems ... 111
 - Bibliography ... 112
CHAPTER 3 .. 113

Chemical Dynamics – I .. 113

- Effect of Temperature on Reaction Rates .. 113
- Rate Law for Opposing Reactions of Ist Order and IInd Order ... 119
- Rate Law for Consecutive & Parallel Reactions of Ist Order Reactions 127
- Collision Theory of Reaction Rates and Its Limitations ... 135
- Steric Factor ... 141
- Activated Complex Theory ... 143
- Ionic Reactions: Single and Double Sphere Models ... 147
- Influence of Solvent and Ionic Strength .. 152
- The Comparison of Collision and Activated Complex Theory ... 157
- Problems .. 158
- Bibliography .. 159

CHAPTER 4 .. 160

Electrochemistry – I: Ion-Ion Interactions ... 160

- The Debye-Huckel Theory of Ion-Ion Interactions ... 160
- Potential and Excess Charge Density as a Function of Distance from the Central Ion 168
- Debye-Huckel Reciprocal Length ... 173
- Ionic Cloud and Its Contribution to the Total Potential ... 176
- Debye-Huckel Limiting Law of Activity Coefficients and Its Limitations 178
- Ion-Size Effect on Potential ... 185
- Ion-Size Parameter and the Theoretical Mean - Activity Coefficient in the Case of Ionic Clouds with Finite-Sized Ions .. 187
- Debye-Huckel-Onsager Treatment for Aqueous Solutions and Its Limitations 190
- Debye-Huckel-Onsager Theory for Non-Aqueous Solutions .. 195
- The Solvent Effect on the Mobility at Infinite Dilution .. 196
- Equivalent Conductivity (λ) vs Concentration $C^{1/2}$ as a Function of the Solvent 198
- Effect of Ion Association Upon Conductivity (Debye-Huckel-Bjerrum Equation) 200
- Problems .. 209
- Bibliography .. 210

CHAPTER 5 .. 211

Quantum Mechanics – II .. 211

- Schrodinger Wave Equation for a Particle in a Three Dimensional Box ... 211
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Concept of Degeneracy Among Energy Levels for a Particle in Three Dimensional Box</td>
<td>215</td>
</tr>
<tr>
<td>Schrödinger Wave Equation for a Linear Harmonic Oscillator & Its Solution by Polynomial Method</td>
<td>217</td>
</tr>
<tr>
<td>Zero Point Energy of a Particle Possessing Harmonic Motion and Its Consequence</td>
<td>229</td>
</tr>
<tr>
<td>Schrödinger Wave Equation for Three Dimensional Rigid Rotator</td>
<td>231</td>
</tr>
<tr>
<td>Energy of Rigid Rotator</td>
<td>241</td>
</tr>
<tr>
<td>Schrödinger Wave Equation for Hydrogen Atom: Separation of Variable in Polar Spherical Coordinates and Its Solution</td>
<td>247</td>
</tr>
<tr>
<td>Principal, Azimuthal and Magnetic Quantum Numbers and the Magnitude of Their Values</td>
<td>268</td>
</tr>
<tr>
<td>Probability Distribution Function</td>
<td>276</td>
</tr>
<tr>
<td>Radial Distribution Function</td>
<td>278</td>
</tr>
<tr>
<td>Shape of Atomic Orbitals (s, p & d)</td>
<td>281</td>
</tr>
<tr>
<td>Problems</td>
<td>287</td>
</tr>
<tr>
<td>Bibliography</td>
<td>288</td>
</tr>
<tr>
<td>CHAPTER 6</td>
<td></td>
</tr>
<tr>
<td>Thermodynamics – II</td>
<td></td>
</tr>
<tr>
<td>Clausius-Clapeyron Equation</td>
<td>289</td>
</tr>
<tr>
<td>Law of Mass Action and Its Thermodynamic Derivation</td>
<td>293</td>
</tr>
<tr>
<td>Phase Diagram for Two Completely Miscible Components Systems</td>
<td>304</td>
</tr>
<tr>
<td>Eutectic Systems (Calculation of Eutectic Point)</td>
<td>311</td>
</tr>
<tr>
<td>Systems Forming Solid Compounds A_xB_y with Congruent and Incongruent Melting Points</td>
<td>321</td>
</tr>
<tr>
<td>Phase Diagram and Thermodynamic Treatment of Solid Solutions</td>
<td>332</td>
</tr>
<tr>
<td>Problems</td>
<td>342</td>
</tr>
<tr>
<td>Bibliography</td>
<td>343</td>
</tr>
<tr>
<td>CHAPTER 7</td>
<td></td>
</tr>
<tr>
<td>Chemical Dynamics – II</td>
<td></td>
</tr>
<tr>
<td>Chain Reactions: Hydrogen-Bromine Reaction, Pyrolysis of Acetaldehyde, Decomposition of Ethane</td>
<td>344</td>
</tr>
<tr>
<td>Photochemical Reactions (Hydrogen-Bromine & Hydrogen-Chlorine Reactions)</td>
<td>352</td>
</tr>
<tr>
<td>General Treatment of Chain Reactions (Ortho-Para Hydrogen Conversion and Hydrogen-Bromine Reactions)</td>
<td>358</td>
</tr>
</tbody>
</table>
Mandeep Dalal is an Indian research scholar who is primarily working in the field of Science and Philosophy. He received his Ph.D in Chemistry from Maharshi Dayanand University, Rohtak, in 2018. He is also the Founder and Director of "Dalal Institute", an India-based educational organization which is trying to revolutionize the mode of higher education in Chemistry across the globe. He has published more than 40 research papers in various international scientific journals, including mostly from Elsevier (USA), IOP (UK) and Springer (Netherlands).

Other Books by the Author

A TEXTBOOK OF INORGANIC CHEMISTRY - VOLUME I, II, III, IV
A TEXTBOOK OF PHYSICAL CHEMISTRY - VOLUME I, II, III, IV
A TEXTBOOK OF ORGANIC CHEMISTRY - VOLUME I, II, III, IV