The Stokes-Einstein Relation

Albert Einstein realized that an ion moving in an electrolytic solution is somewhat analogous to a macroscopic sphere moving in a liquid medium. A macroscopic sphere can travel very fast if it is outside of water or any other liquid; however, its velocity will definitely be affected if it is put in some liquid. The reduced velocity of the sphere in liquid can be attributed to an opposing force exerted upon it by the diameter of the sphere \(d\), viscosity of the medium \(\eta\), density of the medium \(\rho\) and the speed of the ion itself \(v\). All these factors are correlated mathematically to give “Reynolds number \(R_e\)” as

\[
R_e = \frac{vd\rho}{\eta}
\]

(59)

If the hydrodynamics has a profile that makes the \(R_e \ll 1\), Stokes proved that the dragging force \(F\) on the sphere can be formulated by the following relation.

\[
F = 6\pi r \eta v
\]

(60)

Which is the famous Stokes’ law.

Now although the equation (60) is very useful in case of a macroscopic sphere moving in water or in any other liquid, the applicability of the same to microscopic ions requires some testing first. One condition that must be satisfied for the practicality of Stokes law to ion in solution is the very small value of Reynolds number i.e. \(R_e \ll 1\). After using the ionic diameter and typical drift velocity of ion, it is found that Reynolds number is very small in comparison to unity, and therefore, suggests that Stokes law can be applied to ionic movement. However, equation (60) would show deviations from experimental results if the ions tagged are not completely spherical, and therefore, should be modified for such particles. It has been shown that for cylindrical particles, the factor \(6\pi\) must be replaced by \(4\pi\) to get reasonable results. It is also worthy to note that the Stokes law fails to explain the viscous drag on extremely small ions, justifying the need for some other advanced models. Furthermore, besides the viscous drag, the presence of other ions also creates collisions and stop-start zig-zag movement which makes it very difficult to apply Stokes’ law.

Albert Einstein developed a modified approach to correlate the viscosity with the diffusion coefficient by suggesting that a driving force \((-d\mu/dx\) \) operates on the particles during diffusion which can be formulated as given below.

\[
-\frac{d\mu}{dx} = 6\pi r \eta v_d
\]

(61)

Where \(v_d\) is the steady-state velocity of the ion under consideration. The right-hand side of the above equation means that the driving force we assumed must be opposed by an equal and opposite resistive force given by Stokes’ law.

Besides, when a charged particle moves in a polar solvent, solvent dipoles surround it from oppositely charged ends; and this surrounding environment is destroyed and built up again and again due to movement,
and takes time for it. In this relaxation process, a relaxation force is in operation which can be considered as an additional frictional force on the tagged ion. Therefore, the dragging force expression is modified to

\[F = 6\pi \eta vr - 6\pi \eta v \frac{s}{\varepsilon} \]

(62)

Where \(s = (4/9) (\tau/6\pi \eta) \varepsilon_0^2 / r^3 \) whereas \(\varepsilon \) represents the dielectric constant of the solvent. The correction factor sometimes can be very large but will be neglected for the simplicity of the derivation Stokes-Einstein law. Now, from the definition of absolute mobility, i.e.,

\[\bar{u}_{abs} = \frac{v_d}{F} \]

(63)

The drift velocity can be divided either by the diffusional driving force or by the equal and opposite viscous force given by Stokes law. Therefore, using equation (61) in equation (63), we get

\[\bar{u}_{abs} = \frac{v_d}{d\mu/dx} = \frac{1}{6\pi \eta r} \]

(64)

At this stage, recall the famous Einstein's relation between the absolute mobility and diffusion coefficient, i.e.,

\[D = \bar{u}_{abs} kT \]

(65)

Substituting the value of \(\bar{u}_{abs} \) from equation (64) in the above expression, we have

\[D = \frac{kT}{6\pi \eta r} \]

(66)

Which is the famous Stokes-Einstein's relation between the viscosity and diffusion coefficient.

The Stokes-Einstein relation inspired the pioneering work of Perrin who studied the random walk of a colloidal particle using an ultramicroscope and found that the mean square distance \(<x^2>\) covered in \(t\) time is correlated with the diffusion coefficient as given below.

\[D = \frac{<x^2>}{2t} \]

(67)

From the knowledge of the weight of colloidal particles and corresponding density, the magnitude of radius \(r\) can be obtained, which in turn can be employed (along with medium’s viscosity) to find the value of Boltzmann constant from the rearranged form of equation (66)

\[k = \frac{6\pi \eta r D}{T} \]

(68)

Since \(k = R/N_A \), the value of the Avogadro number can be obtained from \(N_A = R/k \). Furthermore, the Stokes-Einstein law can also be used to find the value of conventional ionic mobility \(\bar{u}_{conv} \). To do so, recall the expression for conventional mobility i.e.
\[\bar{u}_{\text{conv}} = \bar{u}_{\text{abs}} z_i e_0 \] \hspace{1cm} (69)

Now using the value of \(\bar{u}_{\text{abs}} \) from equation (64), we have

\[\bar{u}_{\text{conv}} = \frac{z_i e_0}{6\pi \eta} \] \hspace{1cm} (70)

The mobility given is typically labeled as Stokes mobility. The physical significance of the above equation lies in the fact that it shows the correlation of conventional mobility with the charge on the ion, radius of the ion and viscosity of the solvent used. It should also be noted that the equation does not explain the concentration dependence of ion-ion interaction, and therefore, is an oversimplified approach.
Home: https://www.dalalinstitute.com/
Classes: https://www.dalalinstitute.com/classes/
Books: https://www.dalalinstitute.com/books/
Videos: https://www.dalalinstitute.com/videos/
Location: https://www.dalalinstitute.com/location/
Contact Us: https://www.dalalinstitute.com/contact-us/
About Us: https://www.dalalinstitute.com/about-us/

Postgraduate Level Classes
(NET-JRF & IIT-GATE)
Admission
Regular Program Distance Learning Test Series Result

Undergraduate Level Classes
(M.Sc Entrance & IIT-JAM)
Admission
Regular Program Distance Learning Test Series Result

A Textbook of Physical Chemistry – Volume 1

“A Textbook of Physical Chemistry – Volume 1 by Mandeep Dalal” is now available globally; including India, America and most of the European continent. Please ask at your local bookshop or get it online here.

READ MORE

Join the revolution by becoming a part of our community and get all of the member benefits like downloading any PDF document for your personal preview.

Sign Up
A TEXTBOOK OF PHYSICAL CHEMISTRY

Volume I

MANDEEP DALAL
Table of Contents

CHAPTER 1

Quantum Mechanics – I

- Postulates of Quantum Mechanics ... 11
- Derivation of Schrodinger Wave Equation ... 16
- Max-Born Interpretation of Wave Functions ... 21
- The Heisenberg’s Uncertainty Principle ... 24
- Quantum Mechanical Operators and Their Commutation Relations 29
- Hermitian Operators – Elementary Ideas, Quantum Mechanical Operator for Linear Momentum, Angular Momentum and Energy as Hermitian Operator ... 52
- The Average Value of the Square of Hermitian Operators 62
- Commuting Operators and Uncertainty Principle (\(x & p; E & t\)) 63
- Schrodinger Wave Equation for a Particle in One Dimensional Box 65
- Evaluation of Average Position, Average Momentum and Determination of Uncertainty in Position and Momentum and Hence Heisenberg’s Uncertainty Principle ... 70
- Pictorial Representation of the Wave Equation of a Particle in One Dimensional Box and Its Influence on the Kinetic Energy of the Particle in Each Successive Quantum Level 75
- Lowest Energy of the Particle .. 80
- Problems ... 82
- Bibliography .. 83

CHAPTER 2

Thermodynamics – I

- Brief Resume of First and Second Law of Thermodynamics 84
- Entropy Changes in Reversible and Irreversible Processes 87
- Variation of Entropy with Temperature, Pressure and Volume 92
- Entropy Concept as a Measure of Unavailable Energy and Criteria for the Spontaneity of Reaction .. 94
- Free Energy, Enthalpy Functions and Their Significance, Criteria for Spontaneity of a Process ... 98
- Partial Molar Quantities (Free Energy, Volume, Heat Concept) 104
- Gibb’s-Duhem Equation ... 108
- Problems ... 111
- Bibliography .. 112
CHAPTER 3 .. 113

Chemical Dynamics – I .. 113
 ❖ Effect of Temperature on Reaction Rates .. 113
 ❖ Rate Law for Opposing Reactions of Ist Order and IInd Order ... 119
 ❖ Rate Law for Consecutive & Parallel Reactions of Ist Order Reactions 127
 ❖ Collision Theory of Reaction Rates and Its Limitations ... 135
 ❖ Steric Factor ... 141
 ❖ Activated Complex Theory ... 143
 ❖ Ionic Reactions: Single and Double Sphere Models ... 147
 ❖ Influence of Solvent and Ionic Strength .. 152
 ❖ The Comparison of Collision and Activated Complex Theory ... 157
 ❖ Problems .. 158
 ❖ Bibliography .. 159

CHAPTER 4 .. 160

Electrochemistry – I: Ion-Ion Interactions .. 160
 ❖ The Debye-Huckel Theory of Ion-Ion Interactions ... 160
 ❖ Potential and Excess Charge Density as a Function of Distance from the Central Ion 168
 ❖ Debye-Huckel Reciprocal Length ... 173
 ❖ Ionic Cloud and Its Contribution to the Total Potential ... 176
 ❖ Debye-Huckel Limiting Law of Activity Coefficients and Its Limitations 178
 ❖ Ion-Size Effect on Potential ... 185
 ❖ Ion-Size Parameter and the Theoretical Mean - Activity Coefficient in the Case of Ionic Clouds with
 Finite-Sized Ions .. 187
 ❖ Debye-Huckel-Onsager Treatment for Aqueous Solutions and Its Limitations 190
 ❖ Debye-Huckel-Onsager Theory for Non-Aqueous Solutions .. 195
 ❖ The Solvent Effect on the Mobility at Infinite Dilution .. 196
 ❖ Equivalent Conductivity (Λ) vs Concentration C^{1/2} as a Function of the Solvent 198
 ❖ Effect of Ion Association Upon Conductivity (Debye-Huckel-Bjerrum Equation) 200
 ❖ Problems .. 209
 ❖ Bibliography .. 210

CHAPTER 5 .. 211

Quantum Mechanics – II .. 211
 ❖ Schrodinger Wave Equation for a Particle in a Three Dimensional Box 211
Mandeep Dalal is an Indian research scholar who is primarily working in the field of Science and Philosophy. He received his Ph.D in Chemistry from Maharshi Dayanand University, Rohtak, in 2018. He is also the Founder and Director of "Dalal Institute", an India-based educational organization which is trying to revolutionize the mode of higher education in Chemistry across the globe. He has published more than 40 research papers in various international scientific journals, including mostly from Elsevier (USA), IOP (UK) and Springer (Netherlands).