Conformational Analysis of Cycloalkanes (Upto Six Membered Rings)

Most of the cyclic compounds can be categorized on the basis of the number of atoms participating in the cyclic skeleton and their special properties. Rings with 3 or 4 atoms are quite rigid and extremely strained because of their large deviation from the normal tetrahedral angle (109°28’) which gives rise to a very high angle strain and the presence of a very large magnitude of torsional strain as well.

Most common rings have 5–7 members and can be characterized by the normal tetrahedral angles and groups oriented outward from the cycle. Rings with 8–11 members are labeled as medium rings and can be characterized by transannular interactions which is a strain produced by groups pointing inward from the cycle. Furthermore, if the number of atoms is equals to or greater than 12 (large rings), very low strain exists and such rings are pretty much comparable with the corresponding acyclic hydrocarbons. In this section, we will discuss the conformational analysis of cycloalkanes up to six-membered rings.

Conformations of Cyclopropane

Cyclopropane is a kind of cycloalkanes with C₃H₆ as the molecular formula and is consisted of three carbon atoms that are connected with each other to give a cyclic structure. Each carbon atom is also bound with two hydrogens symmetrically so that the point group becomes D₃h. There is a huge ring strain in the cyclopropane due to its smaller size.

The trigonal structure of cyclopropane needs the carbon-carbon bond angles to be at 60°; however, it is much smaller than the ideal bond angle of 109.5° (most stable thermodynamically and is generated for bonds with sp³ hybridized orbitals) and gives rise to the large magnitude of ring strain.
The cyclopropane molecule also possesses a very high torsional strain arising from the eclipsed conformation of its H atoms. Per se, the bonds between the C atoms are significantly weaker than in an archetypal alkane, giving rise to much higher reactivity in this case. Also, the nature of bonding between the carbon atoms is usually described in terms of bent or banana bonds, where the carbon-carbon bonds are bent outwards so that the inter-orbital angle becomes equal to 104°.

All this decreases the magnitude of bond strain and is obtained by distorting the sp³ hybridized orbitals of carbon atoms to theoretically sp⁵ hybridized orbitals (i.e., 1/6 contribution of s orbital and 5/6 contribution of p orbital) so as to make C–C bonds have more p character than usual (and giving s character same time the carbon-to-hydrogen at the more bonds gain).

Newman projections of cyclopropane

One uncommon consequence of bending of bonds is that while the C–C bonds in cyclopropane are weaker than usual, the C atoms are also closer together than in a normal alkane bond: 151 pm versus 153 pm, when the average alkene bond length is about 146 pm.
Conformations of Cyclobutane

The angles between carbon-carbon bonds in cyclobutane are quite strained, and therefore, have lower bond dissociation energies than corresponding unstrained or linear hydrocarbons like cyclohexane or butane. Furthermore, the cyclobutane molecule is very unstable above 500 °C. As far as the structure is concerned, four carbons in cyclobutane are not in a single plane but adopts a puckered or somewhat "folded" conformation.

The conformation of cyclobutene is also known as the "butterfly" structure. Furthermore, it is also worthy to note that equivalent puckered conformations of cyclobutene interconvert within each other at room temperature due to an appropriate supply of thermal energy.
Conformations of Cyclopentane

The cyclopentane is the second-most common cycloalkane (after cyclohexanes) and stabler than cyclobutanes. Its planar conformation has almost zero angle strain but a huge magnitude of torsional strain resulting in a non-planar conformation, which in turn, actually increases angle strain slightly but still favorable due to stability from reduced torsional strain. The cyclopentane undergoes a rapid bond rotation process at room temperature where every carbon has its turns of being at the endo site eventually.

The ‘envelope’ conformation (left) of cyclopentane is of the lowest energy where the out-of-plane carbon (i.e., 1 in the left side structure) is said to be in the ‘endo or inside’ site. The enveloping eliminates the torsional strain along the sides and the envelope’s flapping happens. Nevertheless, the neighboring C atoms are eclipsed at the envelope’s plane and are situated away from the fold.

Furthermore, if we view Newman's projection of cyclopentane molecule signed down one of the carbon-carbon bonds reveals the staggering nature of carbon-hydrogen bonds.
Many students confuse the polygon formula of cyclohexane molecule with its actual structure and assume that it must be planar. Nevertheless, its structure is far from a perfect hexagon because the conformation of a flat 2-dimensional planar hexagon would have a huge magnitude of angle strain. After all, its carbon-carbon bonds would not be at the ideal tetrahedral angle (i.e., 109.5°). Furthermore, the torsional strain would also be of significant magnitude in hexagonal structure because all of the bonds would be of eclipsed type. So, to decrease torsional strain, the cyclohexane adopts a 3-dimensional geometry (chair form), which interconvert at room temperature very rapidly via the chair flipping mechanism during which 3 other intermediate conformations are met: the first one is the half-chair (most unstable), a more stable boat conformation, and the third one is the twist-boat (more stable than the boat but less stable than the chair form).

In the potential energy diagram, the half-chair and the boat are at transition states and signify energy maxima whereas the chair form and twist-boat form are at energy minima inferring their conformer nature. The chair conformation was first suggested by Hermann Sachse in 1890 which gained acceptance at a widespread level in the later period.
In the chair form, the carbon-carbon bond angles become 109.5°, and therefore, the angle strain was completely eliminated. Also, six out of twelve hydrogens were parallel to the principal axis (C₃-axis), and are called axial hydrogens; whereas the remaining hydrogens are at higher angles from the principal axis imparting the label of equatorial hydrogens.

Another important confirmation of cyclohexane molecule is known as the boat form which also gets interconverted to the more stable chair form. Furthermore, if the mono-substitution occurs at cyclohexane, it will most likely happen at the equatorial site because of the less torsional strain. Finally, the cyclohexane molecule has the lowest magnitude of torsional and angle strain of all cycloalkanes available making the cyclohexane a strain-free system.
Table of Contents

CHAPTER I .. 11

Nature of Bonding in Organic Molecules ... 11
 ❖ Delocalized Chemical Bonding .. 11
 ❖ Conjugation ... 14
 ❖ Cross Conjugation ... 16
 ❖ Resonance .. 18
 ❖ Hyperconjugation ... 27
 ❖ Tautomerism ... 31
 ❖ Aromaticity in Benzenoid and Nonbenzenoid Compounds ... 33
 ❖ Alternant and Non-Alternant Hydrocarbons .. 35
 ❖ Huckel’s Rule: Energy Level of π-Molecular Orbitals ... 37
 ❖ Annulenes .. 44
 ❖ Antiaromaticity .. 46
 ❖ Homoaaromaticity ... 48
 ❖ PMO Approach ... 50
 ❖ Bonds Weaker Than Covalent .. 58
 ❖ Addition Compounds: Crown Ether Complexes and Cryptands, Inclusion Compounds, Cyclodextrins ... 65
 ❖ Catenanes and Rotaxanes .. 75
 ❖ Problems .. 79
 ❖ Bibliography .. 80

CHAPTER 2 ... 81

Stereochemistry .. 81
 ❖ Chirality ... 81
 ❖ Elements of Symmetry .. 86
 ❖ Molecules with More Than One Chiral Centre: Diastereomerism .. 90
 ❖ Determination of Relative and Absolute Configuration (Octant Rule Excluded) with Special Reference to Lactic Acid, Alanine & Mandelic Acid ... 92
 ❖ Methods of Resolution .. 102
 ❖ Optical Purity ... 104
 ❖ Prochirality ... 105
 ❖ Enantiotopic and Diastereotopic Atoms, Groups and Faces ... 107
 ❖ Asymmetric Synthesis: Cram’s Rule and Its Modifications, Prelog’s Rule 113
 ❖ Conformational Analysis of Cycloalkanes (Upto Six Membered Rings) 116
 ❖ Decalins ... 122
 ❖ Conformations of Sugars ... 126
 ❖ Optical Activity in Absence of Chiral Carbon (Biphenyls, Allenes and Spiranes) 132
 ❖ Chirality Due to Helical Shape ... 137
 ❖ Geometrical Isomerism in Alkenes and Oximes ... 140
 ❖ Methods of Determining the Configuration ... 146
CHAPTER 3 ...153

Reaction Mechanism: Structure and Reactivity ...153
❖ Problems ...151
❖ Bibliography ...152

CHAPTER 4 ...221

Carbohydrates ..221
❖ Types of Naturally Occurring Sugars ...221
❖ Deoxy Sugars ..227
❖ Amino Sugars ...229
❖ Branch Chain Sugars ..230
❖ General Methods of Determination of Structure and Ring Size of Sugars with Particular Reference
to Maltose, Lactose, Sucrose, Starch and Cellulose ...231
❖ Problems ..239
❖ Bibliography ...240

CHAPTER 5 ...241

Natural and Synthetic Dyes ...241
❖ Various Classes of Synthetic Dyes Including Heterocyclic Dyes ...241
❖ Interaction Between Dyes and Fibers ...245
❖ Structure Elucidation of Indigo and Alizarin ...247
❖ Problems ..252
❖ Bibliography ...253

CHAPTER 6 ...254

Aliphatic Nucleophilic Substitution ...254
❖ The SN₂, SN₁, Mixed SN₁ and SN₂, SNᵢ, SNᵢ′, SN₂′, SNᵢ′ and SET Mechanisms254
CHAPTER 7
Aliphatic Electrophilic Substitution

- The Neighbouring Group Mechanisms ... 263
- Neighbouring Group Participation by \(\pi \) and \(\sigma \) Bonds ... 265
- Anchimeric Assistance ... 269
- Classical and Nonclassical Carbocations ... 272
- Phenonium Ions .. 283
- Common Carbocation Rearrangements .. 284
- Applications of NMR Spectroscopy in the Detection of Carbocations 286
- Reactivity – Effects of Substrate Structure, Attacking Nucleophile, Leaving Group and Reaction Medium .. 288
- Ambident Nucleophiles and Regioselectivity ... 294
- Phase Transfer Catalysis ... 297
- Problems .. 300
- Bibliography .. 301

CHAPTER 8
Aromatic Electrophilic Substitution

- The Arenium Ion Mechanism ... 312
- Orientation and Reactivity .. 314
- Energy Profile Diagrams ... 316
- The Ortho/Para Ratio ... 317
- \textit{ipso}-Attack ... 319
- Orientation in Other Ring Systems ... 320
- Quantitative Treatment of Reactivity in Substrates and Electrophiles 321
- Diazonium Coupling .. 325
- Vilsmeier Reaction ... 326
- Gattermann-Koch Reaction ... 327
- Problems .. 329
- Bibliography .. 330

CHAPTER 9
Aromatic Nucleophilic Substitution

- The \textit{ArSN}_{1}, \textit{ArSN}_{2}, Benzyne and \textit{SrN}_{1} Mechanisms ... 331
- Reactivity – Effect of Substrate Structure, Attacking Nucleophile, Leaving Group and Reaction Medium .. 336
- The von Richter, Sommelet-Hauser, and Smiles Rearrangements 339
- Problems .. 343
- Bibliography .. 344
CHAPTER 10 ... 345
Elimination Reactions .. 345
❖ The E2, E1 and E1CB Mechanisms ... 345
❖ Orientation of the Double Bond .. 348
❖ Reactivity – Effects of Substrate Structures, Attacking Base, the Leaving Group and The Medium ..352
❖ Mechanism and Orientation in Pyrolytic Elimination .. 355
❖ Problems ... 358
❖ Bibliography ... 359

CHAPTER 11 ... 360
Addition to Carbon-Carbon Multiple Bonds ... 360
❖ Mechanistic and Stereochemical Aspects of Addition Reactions Involving Electrophiles, Nucleophiles and Free Radicals ... 360
❖ Regio- and Chemoselectivity: Orientation and Reactivity ... 370
❖ Addition to Cyclopropane Ring ... 374
❖ Hydrogenation of Double and Triple Bonds ... 375
❖ Hydrogenation of Aromatic Rings .. 377
❖ Hydroboration .. 378
❖ Michael Reaction .. 379
❖ Sharpless Asymmetric Epoxidation .. 380
❖ Problems ... 382
❖ Bibliography ... 383

CHAPTER 12 ... 384
Addition to Carbon-Hetero Multiple Bonds ... 384
❖ Mechanism of Metal Hydride Reduction of Saturated and Unsaturated Carbonyl Compounds, Acids, Esters and Nitriles ... 384
❖ Addition of Grignard Reagents, Organozinc and Organolithium Reagents to Carbonyl and Unsaturated Carbonyl Compounds .. 400
❖ Wittig Reaction .. 406
❖ Mechanism of Condensation Reactions Involving Enolates: Aldol, Knoevenagel, Claisen, Mannich, Benzoin, Perkin and Stobbe Reactions ... 411
❖ Hydrolysis of Esters and Amides .. 411
❖ Ammonolysis of Esters .. 433
❖ Problems ... 437
❖ Bibliography ... 439

INDEX ... 441
Mandeep Dalal is an Indian research scholar who is primarily working in the field of Science and Philosophy. He received his Ph.D in Chemistry from Maharshi Dayanand University, Rohtak, in 2018. He is also the Founder of "Dalal Institute" (India’s best coaching centre for academic and competitive chemistry exams), the organization that is committed to revolutionize the field of school-level and higher education in Chemistry across the globe. He has published more than 40 research papers in various international scientific journals, including mostly from Elsevier (USA), IOP (UK), and Springer (Netherlands).