The Neighbouring Group Mechanisms

There are many nucleophilic substitution reactions that give rise to the same configuration (i.e., retention) instead of inversion or racemization. Also, the rate of reaction for such reactions is so high that we cannot rationalize them by simple nucleophilic substitutions. However, it has been observed that one feature that is common in these reactions is a group or atom at β-position to the leaving group. The mechanism responsible for such transformations is labeled as neighboring group participation and can be parted into two normal SN$_2$ consecutive steps. Now since the first SN$_2$ reaction gives inversion (neighboring group as the nucleophile), the subsequent SN$_2$ changes will revert the configuration to the original (neighboring group as leaving group).

The faster rate of reaction can be rationalized in terms of the ready availability of nucleophilic attack in the first step (rate-determining step). Furthermore, it should also be noted that the generation of the cyclic intermediate is a characteristic feature of the neighboring group participation. Some typical cases of neighboring group participation are discussed below.

Reactions Involving Oxygen as Neighbouring Group

One of the most common examples of this type of neighboring group mechanism is the reaction of 2-bromopropanoic acid with a dilute solution of NaOH.

It is obvious from the above route that the configuration has remained the same (R)-lactate anion), unlike SN$_2$ where we would have obtained the (S)-lactate anion.
Reactions Involving Nitrogen as Neighbouring Group

One of the most common examples of this type of neighboring group mechanism is the reaction of 2-chloro-N,N-diethylpropan-1-amine with a dilute solution of NaOH.

It is obvious from the above route that the configuration has remained the same, unlike SN₂ where we would have obtained the 1-(diethylamino) propan-2-ol.

Reactions Involving Halogen as Neighbouring Group

One of the most common examples of this type of neighboring group mechanism is the reaction involving the acetolysis of trans-2-iodocyclohexyl brosylate in which the configuration remains the same at the asymmetric center.

The is obvious from the above route that the configuration would have changed if the reaction had taken place via normal SN₂, which is observed for cis isomer.
Reactions Involving Sulphur as Neighbouring Group

One of the most common examples of this type of neighboring group mechanism is the reaction involving the hydrolysis of bis(2-chloroethyl) sulfane in which the configuration remains the same at the asymmetric center.

It is obvious from the above route that the configuration would have changed if the reaction had taken place via the normal SN₂ route.
Want to study chemistry for CSIR UGC – NET JRF, IIT-GATE, M.Sc Entrance, IIT-JAM, IIT-JEE, NEET, 11th and 12th?

Are you interested in books (Print and Ebook) published by Dalal Institute?

Want video lectures in chemistry for CSIR UGC – NET JRF + IIT-GATE; IIT-JAM + M.Sc Entrance; IIT-JEE + NEET + 11th +12th; and all other postgraduate, undergraduate & senior-secondary level examinations where chemistry is a paper?
Table of Contents

CHAPTER 1 .. 11

Nature of Bonding in Organic Molecules ... 11
- Delocalized Chemical Bonding .. 11
- Conjugation .. 14
- Cross Conjugation ... 16
- Resonance .. 18
- Hyperconjugation .. 27
- Tautomerism .. 31
- Aromaticity in Benzenoid and Nonbenzenoid Compounds ... 33
- Altent and Non-Altent Hydrocarbons ... 35
- Huckel’s Rule: Energy Level of π-Molecular Orbitals ... 37
- Annulenes .. 44
- Antiaromaticity .. 46
- Homoaromaticity ... 48
- PMO Approach .. 50
- Bonds Weaker Than Covalent .. 58
- Addition Compounds: Crown Ether Complexes and Cryptands, Inclusion Compounds,
 Cycloexetrins .. 65
- Catenanes and Rotaxanes ... 75
- Problems .. 79
- Bibliography ... 80

CHAPTER 2 .. 81

Stereocchemistry ... 81
- Chirality .. 81
- Elements of Symmetry ... 86
- Molecules with More Than One Chiral Centre: Diastereomerism 90
- Determination of Relative and Absolute Configuration (Octant Rule Excluded) with Special
 Reference to Lactic Acid, Alanine & Mandelic Acid .. 92
- Methods of Resolution .. 102
- Optical Purity ... 104
- Prochirality ... 105
- Enantiotopic and Diastereotopic Atoms, Groups and Faces .. 107
- Asymmetric Synthesis: Cram’s Rule and Its Modifications, Prelog’s Rule 113
- Conformational Analysis of Cycloalkanes (Upto Six Membered Rings) 116
- Decalins ... 122
- Conformations of Sugars ... 126
- Optical Activity in Absence of Chiral Carbon (Biphenyls, Allenes and Spiranes) 132
- Chirality Due to Helical Shape ... 137
- Geometrical Isomerism in Alkenes and Oximes .. 140
- Methods of Determining the Configuration .. 146
CHAPTER 3 Reaction Mechanism: Structure and Reactivity

- Types of Mechanisms
- Types of Reactions
- Thermodynamic and Kinetic Requirements
- Kinetic and Thermodynamic Control
- Hammond’s Postulate
- Curtin-Hammett Principle
- Potential Energy Diagrams: Transition States and Intermediates
- Methods of Determining Mechanisms
- Isotope Effects
- Hard and Soft Acids and Bases
- Generation, Structure, Stability and Reactivity of Carbocations, Carbanions, Free Radicals, Carbenes and Nitrenes
- Effect of Structure on Reactivity
- The Hammett Equation and Linear Free Energy Relationship
- Substituent and Reaction Constants
- Taft Equation
- Problems
- Bibliography

CHAPTER 4 Carbohydrates

- Types of Naturally Occurring Sugars
- Deoxy Sugars
- Amino Sugars
- Branch Chain Sugars
- General Methods of Determination of Structure and Ring Size of Sugars with Particular Reference to Maltose, Lactose, Sucrose, Starch and Cellulose
- Problems
- Bibliography

CHAPTER 5 Natural and Synthetic Dyes

- Various Classes of Synthetic Dyes Including Heterocyclic Dyes
- Interaction Between Dyes and Fibers
- Structure Elucidation of Indigo and Alizarin
- Problems
- Bibliography

CHAPTER 6 Aliphatic Nucleophilic Substitution

- The SN₂, SN₁, Mixed SN₁ and SN₂, SN₀, SN₀’, SN₂’, SN₀’ and SET Mechanisms
• The Neighbouring Group Mechanisms ... 263
• Neighbouring Group Participation by \(\pi \) and \(\sigma \) Bonds .. 265
• Anchimeric Assistance ... 269
• Classical and Nonclassical Carbocations .. 272
• Phenonium Ions .. 283
• Common Carbocation Rearrangements ... 284
• Applications of NMR Spectroscopy in the Detection of Carbocations 286
• Reactivity – Effects of Substrate Structure, Attacking Nucleophile, Leaving Group and Reaction Medium ... 288
• Ambident Nucleophiles and Regioselectivity ... 294
• Phase Transfer Catalysis .. 297
• Problems .. 300
• Bibliography ... 301

CHAPTER 7 ... 302
Aliphatic Electrophilic Substitution ... 302
• Bimolecular Mechanisms – \(\text{SE}_2 \) and \(\text{SE}_1 \) .. 302
• The \(\text{SE}_1 \) Mechanism ... 305
• Electrophilic Substitution Accompanied by Double Bond Shifts 307
• Effect of Substances, Leaving Group and the Solvent Polarity on the Reactivity 308
• Problems .. 310
• Bibliography ... 311

CHAPTER 8 ... 312
Aromatic Electrophilic Substitution ... 312
• The Arenium Ion Mechanism ... 312
• Orientation and Reactivity .. 314
• Energy Profile Diagrams .. 316
• The Ortho/Para Ratio .. 317
• \(\text{ipso} \)-Attack .. 319
• Orientation in Other Ring Systems ... 320
• Quantitative Treatment of Reactivity in Substrates and Electrophiles 321
• Diazonium Coupling .. 325
• Wilsmeier Reaction .. 326
• Gattermann-Koch Reaction ... 327
• Problems .. 329
• Bibliography ... 330

CHAPTER 9 ... 331
Aromatic Nucleophilic Substitution ... 331
• The \(\text{ArSN}_1, \text{ArSN}_2, \text{Benzyne and S}_8\text{N}_1 \) Mechanisms .. 331
• Reactivity – Effect of Substrate Structure, Attacking Nucleophile 336
• The von Richter, Sommelet-Hauser, and Smiles Rearrangements 339
• Problems .. 343
• Bibliography ... 344
CHAPTER 10 ... 345
Elimination Reactions ... 345
❖ The E₂, E₁ and E₁CB Mechanisms ... 345
❖ Orientation of the Double Bond .. 348
❖ Reactivity – Effects of Substrate Structures, Attacking Base, the Leaving Group and the Medium .. 352
❖ Mechanism and Orientation in Pyrolytic Elimination .. 355
❖ Problems ... 358
❖ Bibliography ... 359
CHAPTER 11 ... 360
Addition to Carbon-Carbon Multiple Bonds ... 360
❖ Mechanistic and Stereochemical Aspects of Addition Reactions Involving Electrophiles, Nucleophiles and Free Radicals ... 360
❖ Regio- and Chemoselectivity: Orientation and Reactivity .. 370
❖ Addition to Cyclopropane Ring .. 374
❖ Hydrogenation of Double and Triple Bonds .. 375
❖ Hydrogenation of Aromatic Rings .. 377
❖ Hydroboration .. 378
❖ Michael Reaction .. 379
❖ Sharpless Asymmetric Epoxidation ... 380
❖ Problems ... 382
❖ Bibliography ... 383
CHAPTER 12 ... 384
Addition to Carbon-Hetero Multiple Bonds .. 384
❖ Mechanism of Metal Hydride Reduction of Saturated and Unsaturated Carbonyl Compounds, Acids, Esters and Nitriles ... 384
❖ Addition of Grignard Reagents, Organozinc and Organolithium Reagents to Carbonyl and Unsaturated Carbonyl Compounds ... 400
❖ Wittig Reaction ... 406
❖ Mechanism of Condensation Reactions Involving Enolates: Aldol, Knoevenagel, Claisen, Mannich, Benzoin, Perkin and Stobbe Reactions ... 411
❖ Hydrolysis of Esters and Amides .. 411
❖ Ammonolysis of Esters .. 433
❖ Problems ... 437
❖ Bibliography ... 439
INDEX ... 441
Mandeep Dalal is an Indian research scholar who is primarily working in the field of Science and Philosophy. He received his Ph.D in Chemistry from Maharshi Dayanand University, Rohtak, in 2018. He is also the Founder of "Dalal Institute" (India’s best coaching centre for academic and competitive chemistry exams), the organization that is committed to revolutionize the field of school-level and higher education in Chemistry across the globe. He has published more than 40 research papers in various international scientific journals, including mostly from Elsevier (USA), IOP (UK), and Springer (Netherlands).

Other Books by the Author

A TEXTBOOK OF INORGANIC CHEMISTRY - VOLUME I, II, III, IV
A TEXTBOOK OF PHYSICAL CHEMISTRY - VOLUME I, II, III, IV
A TEXTBOOK OF ORGANIC CHEMISTRY - VOLUME I, II, III, IV