Reactivity – Effect of Substrate Structure, Leaving Group and Attacking Nucleophile

In this section, we will discuss the effect of substrate structure, leaving the group and attacking nucleophiles on the reactivity of nucleophilic substitution in aromatic compounds.

Effect of Substrate Structure on the Reactivity of Aromatic Electrophilic Substitution

Just like the case of aromatic electrophilic substitution, substrate structure also affects the reactivity of aromatic nucleophilic substitution w.r.t orientation as well as ring-activation. However, orientation-effect was of more importance in the electrophilic case four or five hydrogens were able that act as leaving groups in comparison to the nucleophilic-case where the typical number of leaving group one. Consequently, substrate reactivity is primarily studied w.r.t other molecules rather than the same species.

Aromatic nucleophilic substitution reactions are typically opposed by electron attracting groups but enhanced by electron-withdrawing groups mainly at ortho and para positions to the leaving group, which is just the reverse order for electrophilic substitutions. Therefore, all the groups can be arranged in ascending or descending order of their activating (or deactivating) abilities.

Groups with nitrogen atoms activating in nature w.r.t to o- and p-position with N_2^+ as the strongest activator. Also, –NO_2 is the most common activating group; whereas 2,4-dinitrophenyl halides and 2,4,6-trinitrophenyl halides are considered as the most common substrates. Furthermore, substrates without activating groups are largely useless to serve in ArSN$_{1,2}$ pathways, which can be attributed to the presence of 2 antibonding electrons in the ring. If attached groups are electron-withdrawing, they can activate the reaction by withdrawing electron density, and therefore, will stabilize the transition states (or intermediate). Aromatic electrophilic substitutions of type ArSN$_{1,2}$ are also supported if a transition metal is connected to the aromatic ring. Finally, the Hammett equation can also be modified for aromatic electrophilic substitution with the difference of σ^- instead of σ^+.
As far as the benzyne pathway is concerned, the reactivity w.r.t to the substrate can be factored in categories; one is the direction the aryne forms in, and the second is the presence of groups at ortho or para positions to the leaving group.

However, if the aryne substrate is \textit{m}-substituted, the nucleophilic substitution can occur via two different routes as shown below.

These types of attacks occur via the removal of more acidic hydrogen; and because the acidity is correlated to the magnitude of field effect of the \textit{Z} group, we can conclude that \textit{Z} with more electron-attracting character will support the removal of the \textit{o}-hydrogen whereas the \textit{Z} with electron-donating character will elimination of the \textit{p}-hydrogen atom. On the other hand, the other route says that though the aryne attacked at two sites, the favored site for the nucleophile to attack will be the one that gives rise to a stabler carbanion (which is also a function of \textit{Z}'s field effect).

In other words, we may conclude that the carbanion with the negative charge closer to \textit{Z} will be more stable than others.
Effect of Leaving Group on the Reactivity of Aromatic Electrophilic Substitution

Typical leaving groups for nucleophilic substitutions in aromatic compounds are \(X^- \) (halides), sulfonate, sulfate, \(NR_3^+ \), etc., which also act as a leaving-group for nucleophilic substitution in aliphatic compounds. Nevertheless, some groups are common; for instance, \(OAr, SO_2R, NO_2, OR, \) and \(SR \), which do not act as leaving-group in aliphatic compounds but exclusively in aromatic systems. The typical order of leaving group power in aromatic nucleophilic substitution is given below.

\[
F > NO_2 > OTs > SOPh > Cl > Br > I > N_3^- > NR_3^+ > OAr, OR, SR, NH_2
\]

It is obvious from the order given above that \(F \) and \(NO_2 \) are exceptionally good leaving groups in the aromatic nucleophilic substitution. Nonetheless, it should also be kept in mind that a better leaving group doesn’t always lead to the preferred product because the nature of attacking nucleophile also decide the final departed result. For example, \(Cl \) is better a better leaving group than \(OR \) but the attack of \(NH_2^- \) on \(C_6Cl_5OCH_3 \) always results in \(C_6Cl_5NH_2 \) which is contrary to expectations.

Routinely, the formation of an inorganic ester can also make \(OH \) act like a leaving group. It can also be seen that leaving group order give here different than aliphatic nucleophilic substitution because the first step (rate-determining) in the present case is assisted by prevalent −I effects.

Effect of Attacking Nucleophile on the Reactivity of Aromatic Electrophilic Substitution

Just like the order of leaving groups, the manifestation of a universal nucleophilicity order is very hard; though an approximation can still be made.

\[
NH_2 > Ph_3C > PhNH^- > ArS > RO > R'NH > ArO > OH > ArNH_2 > NH_3 > I > Br > Cl > H_2O > ROH.
\]

The nucleophilic strength also depends upon the base strength and shows an increase we select the attacking atom more down the group. Nevertheless, like other physical concepts, some exceptions are always present like a stronger basic character of \(OH \) than \(ArO \) but weaker nucleophilicity.

It is also worthy to remember that even though the nucleophilicity order is not invariant, it still finds application in a wide range of synthetic and practical applications including the assignment of electrophilicity parameters in the case of electron-short heteroarenes.
Want to study chemistry for CSIR UGC - NET JRF, IIT-GATE, M.Sc Entrance, IIT-JAM, IIT-JEE, NEET, 11th and 12th?

Are you interested in books (Print and Ebook) published by Dalal Institute?

Want video lectures in chemistry for CSIR UGC - NET JRF + IIT-GATE; IIT-JAM + M.Sc Entrance; IIT-JEE + NEET + 11th + 12th; and all other postgraduate, undergraduate & senior-secondary level examinations where chemistry is a paper?

Join the revolution by becoming a part of our community and get all of the member benefits like downloading any PDF document for your personal preview.

Sign Up
Table of Contents

CHAPTER 1 ... 11

Nature of Bonding in Organic Molecules .. 11
- Delocalized Chemical Bonding ... 11
- Conjugation ... 14
- Cross Conjugation .. 16
- Resonance .. 18
- Hyperconjugation ... 27
- Tautomerism .. 31
- Aromaticity in Benzenoid and Nonbenzenoid Compounds ... 33
- Alternant and Non-Alternant Hydrocarbons .. 35
- Huckel’s Rule: Energy Level of π-Molecular Orbitals .. 37
- Annulenes .. 44
- Antiaromaticity ... 46
- Homooaromaticity .. 48
- PMO Approach ... 50
- Bonds Weaker Than Covalent ... 58
- Addition Compounds: Crown Ether Complexes and Cryptands, Inclusion Compounds, Cyclodextrins ... 65
- Catenanes and Rotaxanes ... 75
- Problems ... 79
- Bibliography ... 80

CHAPTER 2 ... 81

Stereochemistry .. 81
- Chirality ... 81
- Elements of Symmetry .. 86
- Molecules with More Than One Chiral Centre: Diastereomerism .. 90
- Determination of Relative and Absolute Configuration (Octant Rule Excluded) with Special Reference to Lactic Acid, Alanine & Mandelic Acid .. 92
- Methods of Resolution ... 102
- Optical Purity ... 104
- Prochirality ... 105
- Enantiogenic and Diastereotopic Atoms, Groups and Faces .. 107
- Asymmetric Synthesis: Cram’s Rule and Its Modifications, Prelog’s Rule 113
- Conformational Analysis of Cycloalkanes (Upto Six Membered Rings) .. 116
- Decalins ... 122
- Conformations of Sugars .. 126
- Optical Activity in Absence of Chiral Carbon (Biphenyls, Allenes and Spiranes) 132
- Chirality Due to Helical Shape ... 137
- Geometrical Isomerism in Alkenes and Oximes ... 140
- Methods of Determining the Configuration ... 146
CHAPTER 7 ... 302
Aliphatic Electrophilic Substitution ... 302
 ❖ Bimolecular Mechanisms – SE₂ and SE₁ .. 302
 ❖ The SE₁ Mechanism .. 305
 ❖ Electrophilic Substitution Accompanied by Double Bond Shifts .. 307
 ❖ Effect of Substrates, Leaving Group and the Solvent Polarity on the Reactivity 308
 ❖ Problems ... 310
 ❖ Bibliography .. 311

CHAPTER 8 ... 312
Aromatic Electrophilic Substitution ... 312
 ❖ The Arenium Ion Mechanism ... 312
 ❖ Orientation and Reactivity .. 314
 ❖ Energy Profile Diagrams .. 316
 ❖ The Ortho/Para Ratio .. 317
 ❖ ipso-Attack ... 319
 ❖ Orientation in Other Ring Systems .. 320
 ❖ Quantitative Treatment of Reactivity in Substrates and Electrophiles ... 321
 ❖ Diazonium Coupling ... 325
 ❖ Wilsmeier Reaction .. 326
 ❖ Gattermann-Koch Reaction .. 327
 ❖ Problems ... 329
 ❖ Bibliography .. 330

CHAPTER 9 ... 331
Aromatic Nucleophilic Substitution ... 331
 ❖ The ArSN₁, ArSN₂, Benzyne and S₈N₄ Mechanisms.. 331
 ❖ Reactivity – Effect of Substrate Structure, Leaving Group and Attacking Nucleophile 336
 ❖ The von Richter, Sommelet-Hauser, and Smiles Rearrangements .. 339
 ❖ Problems ... 343
 ❖ Bibliography .. 344
CHAPTER 10 ... 345
Elimination Reactions .. 345
❖ The E2, E1 and E1_CB Mechanisms .. 345
❖ Orientation of the Double Bond ... 348
❖ Reactivity – Effects of Substrate Structures, Attacking Base, the Leaving Group and The Medium .. 352
❖ Mechanism and Orientation in Pyrolytic Elimination .. 355
❖ Problems ... 358
❖ Bibliography ... 359

CHAPTER 11 ... 360
Addition to Carbon-Carbon Multiple Bonds .. 360
❖ Mechanistic and Stereochemical Aspects of Addition Reactions Involving Electrophiles, Nucleophiles and Free Radicals ... 360
❖ Regio- and Chemoselectivity: Orientation and Reactivity .. 370
❖ Addition to Cyclopropane Ring ... 374
❖ Hydrogenation of Double and Triple Bonds .. 375
❖ Hydrogenation of Aromatic Rings ... 377
❖ Hydroboration ... 378
❖ Michael Reaction .. 379
❖ Sharpless Asymmetric Epoxidation ... 380
❖ Problems ... 382
❖ Bibliography ... 383

CHAPTER 12 ... 384
Addition to Carbon-Hetero Multiple Bonds ... 384
❖ Mechanism of Metal Hydride Reduction of Saturated and Unsaturated Carbonyl Compounds, Acids, Esters and Nitriles ... 384
❖ Addition of Grignard Reagents, Organozinc and Organolithium Reagents to Carbonyl and Unsaturated Carbonyl Compounds .. 400
❖ Wittig Reaction ... 406
❖ Mechanism of Condensation Reactions Involving Enolates: Aldol, Knoevenagel, Claisen, Mannich, Benzoin, Perkin and Stobbe Reactions .. 411
❖ Hydrolysis of Esters and Amides ... 411
❖ Ammonolysis of Esters .. 432
❖ Problems ... 433
❖ Bibliography ... 438

INDEX ... 441
Mandeep Dalal is an Indian research scholar who is primarily working in the field of Science and Philosophy. He received his Ph.D in Chemistry from Maharshi Dayanand University, Rohtak, in 2018. He is also the Founder of "Dalal Institute" (India’s best coaching centre for academic and competitive chemistry exams), the organization that is committed to revolutionize the field of school-level and higher education in Chemistry across the globe. He has published more than 40 research papers in various international scientific journals, including mostly from Elsevier (USA), IOP (UK), and Springer (Netherlands).