Law of Mass Action and Its Thermodynamic Derivation

According to the law of mass action, the rate of a chemical reaction is directly proportional to the product of the activities or simply the active masses of the reactants each term raised to its stoichiometric coefficients.

To understand the law of mass action in mathematical language, consider a reaction in which two reactants A and B react to form the product C and D i.e.

$$aA + bB \to cC + dD \tag{33}$$

Then the law of mass action says the rate of the above conversion should be

$$Rate \propto [A]^a [B]^b \tag{34}$$

$$Rate = k[A]^a[B]^b \tag{35}$$

Where k is the constant of proportionality and is typically labeled as rate constant of the reaction.

However, the actual rate of the reaction may or may not be equal to what is suggested by the "law of mass action" because the actual rate law may have powers raised to the active masses different from their stoichiometric coefficients. Mathematically, the actual rate law for the reaction given by equation (33) is

$$Rate \propto [A]^{\alpha}[B]^{\beta} \tag{36}$$

$$Rate = k[A]^{\alpha}[B]^{\beta} \tag{37}$$

Now comparing equation (35) and equation (37); the law of mass action and actual rate law will give same results when $a = \alpha$ and $b = \beta$; whereas different results will be observed when $a \neq \alpha$ and $b \neq \beta$.

Modern Definition of the Law of Mass Action

The law of mass action can be used to study the composition of a mixture in a reversible reaction under equilibrium conditions. To do so, consider a typical reversible reaction i.e.

$$aA + bB \rightleftharpoons cC + dD \tag{38}$$

Now, from the law of mass action, we know that the rate of forward reaction (R_f) and rate backward reaction (R_b) will be

$$R_f = k_f [A]^a [B]^b \tag{39}$$

$$R_b = k_b [C]^c [D]^d \tag{40}$$

Where k_f and k_b are the rate constants for the forward and backward reactions, respectively. After equilibrium is reached, we have

$$R_f = R_b \tag{41}$$

$$k_f[A]^a[B]^b = k_b[C]^c[D]^d$$
(42)

or

$$\frac{k_f}{k_b} = \frac{[C]^c[D]^d}{[A]^a[B]^b}$$
(43)

Since the k_f and k_b are also constant at equilibrium, the ratio of the two is also a constant and is typically labeled as *K* or the equilibrium constant. Therefore, equation (43) is modified as

$$K = \frac{k_f}{k_b} = \frac{[C]^c [D]^d}{[A]^a [B]^b}$$
(44)

All this leads to the modern definition of "law of mass action" that the ratio of the multiplication of molar concentrations of products raised to the power of their stoichiometric coefficients to the multiplication of the molar concentrations of the reactants raised to the power of their stoichiometric coefficients is constant at constant temperature and is called as "equilibrium constant". It is also worthy to mention that equation (44) is also known as the "law of chemical equilibrium".

> Thermodynamic Derivation of the Law of Mass Action

In order to derive the law of mass action thermodynamically, recall the general form of a typical reversible reaction under equilibrium conditions in which reactants and products are ideal gases i.e.

$$aA + bB \rightleftharpoons cC + dD \tag{45}$$

Now, as we know that the total free energy of the reactant (G_R) can be formulated as

$$G_R = a\mu_A + b\mu_B \tag{46}$$

Where μ_A and μ_B are the chemical potentials of reactant *A* and *B*, respectively. Similarly, the total free energy of the products (G_P) can also be formulated i.e.

$$G_P = c\mu_C + d\mu_D \tag{47}$$

It is also important to mention that the temperature and pressure are kept constant. Moreover, the free energy change of the whole reaction can be obtained by subtracting equation (46) from equation (47) i.e.

$$\Delta G_{reaction} = G_P - G_R \tag{48}$$

$$\Delta G_{reaction} = (c\mu_C + d\mu_D) - (a\mu_A + b\mu_B)$$
⁽⁴⁹⁾

Recalling the fact that the free energy change at equilibrium is zero, equation (49) is reduced to

$$(c\mu_{C} + d\mu_{D}) - (a\mu_{A} + b\mu_{B}) = 0$$
(51)

Now recall the expression of the chemical potential of the *i*th species in gas phase i.e.

$$\mu_i = \mu_i^0 + RT \ln p_i \tag{52}$$

Where p_i and μ_i^0 are the partial pressure and standard chemical potential of *i*th species, respectively. Now using equation (52) in equation (51), we get

$$[c(\mu_C^0 + RT\ln p_C) + d(\mu_D^0 + RT\ln p_D)] - [a(\mu_A^0 + RT\ln p_A) + b(\mu_B^0 + RT\ln p_B)] = 0$$
(53)

or

$$c\mu_{C}^{0} + cRT \ln p_{C} + d\mu_{D}^{0} + dRT \ln p_{D} - a\mu_{A}^{0} - aRT \ln p_{A} - b\mu_{B}^{0} - bRT \ln p_{B} = 0$$
(54)

$$c\mu_{C}^{0} + RT\ln p_{C}^{c} + d\mu_{D}^{0} + RT\ln p_{D}^{d} - a\mu_{A}^{0} - RT\ln p_{A}^{a} - b\mu_{B}^{0} - RT\ln p_{B}^{b} = 0$$
(55)

$$RT \ln p_{C}^{c} + RT \ln p_{D}^{d} - RT \ln p_{A}^{a} - RT \ln p_{B}^{b} = -c\mu_{C}^{0} - d\mu_{D}^{0} + a\mu_{A}^{0} + b\mu_{B}^{0}$$

or

$$RT \ln \left(p_C^c p_D^d \right) - RT \ln \left(p_A^a p_B^b \right) = -\left[c \mu_C^0 + d \mu_D^0 - a \mu_A^0 - b \mu_B^0 \right]$$
(56)

$$RT \ln \frac{(p_c^c p_D^d)}{(p_A^a p_B^b)} = -[G_P^o - G_R^o]$$
(57)

Where $\Delta G_{reaction}^{o}$ is the standard free energy change of the reaction can be simply abbreviated as ΔG^{o} only. Therefore, the equation (58) can be rearranged as given below.

$$\ln \frac{\left(p_c^c p_D^d\right)}{\left(p_A^a p_B^b\right)} = -\frac{\Delta G^o}{RT}$$
(59)

$$\frac{p_C^c p_D^d}{p_A^a p_B^b} = e^{-\frac{\Delta G^o}{RT}}$$
(61)

Now because ΔG^o is a function of temperature only and *R* is a constant quantity, the right-hand side can be put equal to another constant, say ' K_p '.

$$e^{-\frac{\Delta G^o}{RT}} = K_p \tag{62}$$

From equation (61) and equation (62), we have

$$K_p = \frac{p_C^c p_D^d}{p_A^a p_B^b} \tag{63}$$

Which is again the modern statement of "law of mass action" but in terms of partial pressures.

Other forms of equation (63) can also be written depending upon the reactants and products involved. If the chemical potentials of the reactants and products are in mole fractions (x_i) i.e.

$$\mu_i = \mu_i^0 + RT \ln x_i \tag{64}$$

Then equation (63) takes the form

$$K_x = \frac{x_C^c x_D^d}{x_A^a x_B^b} \tag{65}$$

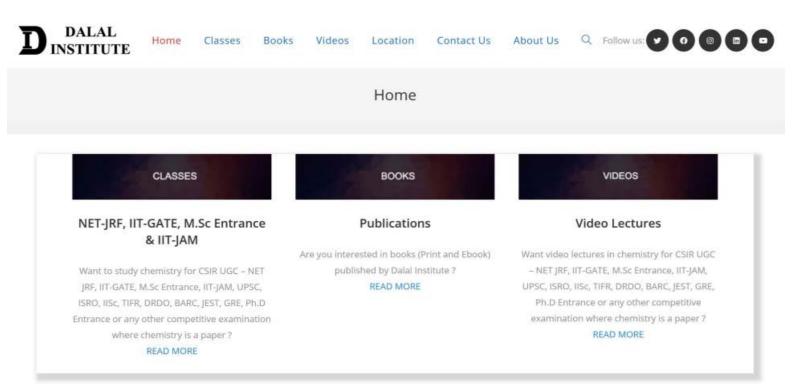
Similarly, If the chemical potentials of the reactants and products are in molar concentrations (c_i) i.e.

$$\mu_i = \mu_i^0 + RT \ln c_i \tag{66}$$

Then equation (63) takes the form

$$K_{c} = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$$
(67)

Which is the popular form of "law of mass action".


LEGAL NOTICE

This document is an excerpt from the book entitled "A Textbook of Physical Chemistry – Volume 1 by Mandeep Dalal", and is the intellectual property of the Author/Publisher. The content of this document is protected by international copyright law and is valid only for the personal preview of the user who has originally downloaded it from the publisher's website (www.dalalinstitute.com). Any act of copying (including plagiarizing its language) or sharing this document will result in severe civil and criminal prosecution to the maximum extent possible under law.

This is a low resolution version only for preview purpose. If you want to read the full book, please consider buying.

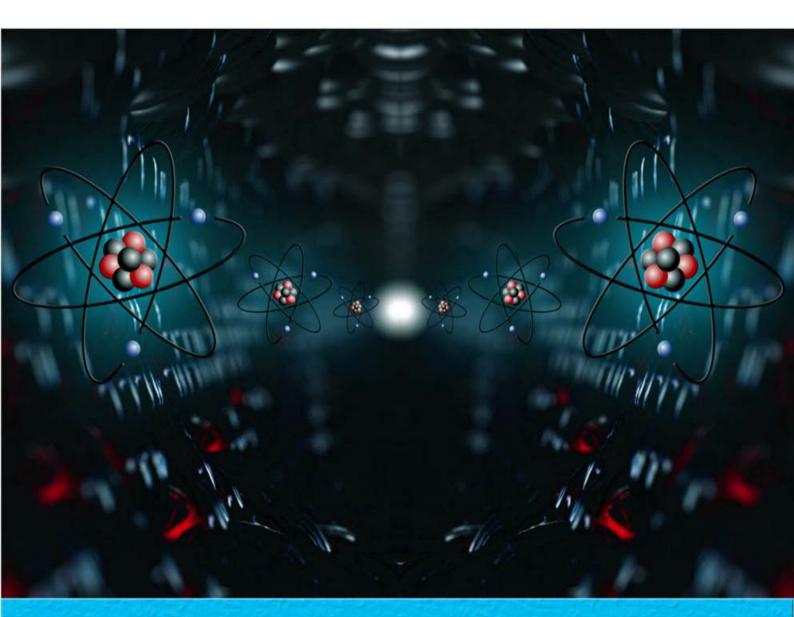
Buy the complete book with TOC navigation, high resolution images and no watermark.

Home: https://www.dalalinstitute.com/ Classes: https://www.dalalinstitute.com/classes/ Books: https://www.dalalinstitute.com/books/ Videos: https://www.dalalinstitute.com/videos/ Location: https://www.dalalinstitute.com/location/ Contact Us: https://www.dalalinstitute.com/contact-us/ About Us: https://www.dalalinstitute.com/about-us/

Postgraduate Level Classes		Undergraduate Level Classes	
(NET-JRF & IIT-GATE)		(M.Sc Entrance & IIT-JAM)	
Admission		Admission	
Regular Program Test Series	Distance Learning Result	Regular Program Test Series	Distance Learning Result

A Textbook of Physical Chemistry - Volume 1

"A Textbook of Physical Chemistry – Volume 1 by Mandeep Dalal" is now available globally; including India, America and most of the European continent. Please ask at your local bookshop or get it online here. READ MORE


Join the revolution by becoming a part of our community and get all of the member benefits like downloading any PDF document for your personal preview.

Sign Up

A TEXTBOOK OF PHYSICAL CHEMISTRY Volume I

MANDEEP DALAL

First Edition

DALAL INSTITUTE

Table of Contents

CHAP	TER 1	11
Qua	ntum Mechanics – I	11
*	Postulates of Quantum Mechanics	11
*	Derivation of Schrodinger Wave Equation	16
*	Max-Born Interpretation of Wave Functions	21
*	The Heisenberg's Uncertainty Principle	24
*	Quantum Mechanical Operators and Their Commutation Relations	29
*	Hermitian Operators – Elementary Ideas, Quantum Mechanical Operator for Linear Momentu Angular Momentum and Energy as Hermitian Operator	
*	The Average Value of the Square of Hermitian Operators	62
*	Commuting Operators and Uncertainty Principle (<i>x</i> & <i>p</i> ; <i>E</i> & <i>t</i>)	63
*	Schrodinger Wave Equation for a Particle in One Dimensional Box	
*	Evaluation of Average Position, Average Momentum and Determination of Uncertainty in Positi and Momentum and Hence Heisenberg's Uncertainty Principle	
*	Pictorial Representation of the Wave Equation of a Particle in One Dimensional Box and Influence on the Kinetic Energy of the Particle in Each Successive Quantum Level	Its
*	Lowest Energy of the Particle	80
*	Problems	82
*	Bibliography	83
CHAP'	TER 2	84
Ther	modynamics – I	84
*	Brief Resume of First and Second Law of Thermodynamics	84
*	Entropy Changes in Reversible and Irreversible Processes	87
*	Variation of Entropy with Temperature, Pressure and Volume	92
*	Entropy Concept as a Measure of Unavailable Energy and Criteria for the Spontaneity of Reacti	
*	Free Energy, Enthalpy Functions and Their Significance, Criteria for Spontaneity of a Process	98
*	Partial Molar Quantities (Free Energy, Volume, Heat Concept) 1	.04
*	Gibb's-Duhem Equation	08
*	Problems	11
*	Bibliography1	12


CHAP	ГЕR 3	113
Cher	nical Dynamics – I	113
*	Effect of Temperature on Reaction Rates	113
*	Rate Law for Opposing Reactions of Ist Order and IInd Order	119
*	Rate Law for Consecutive & Parallel Reactions of Ist Order Reactions	127
*	Collision Theory of Reaction Rates and Its Limitations	135
*	Steric Factor	141
*	Activated Complex Theory	143
*	Ionic Reactions: Single and Double Sphere Models	147
*	Influence of Solvent and Ionic Strength	152
*	The Comparison of Collision and Activated Complex Theory	157
*	Problems	158
*	Bibliography	159
CHAP'	ГЕК 4	160
Elect	rochemistry – I: Ion-Ion Interactions	160
*	The Debye-Huckel Theory of Ion-Ion Interactions	160
*	Potential and Excess Charge Density as a Function of Distance from the Central Ion	168
*	Debye-Huckel Reciprocal Length	173
*	Ionic Cloud and Its Contribution to the Total Potential	176
*	Debye-Huckel Limiting Law of Activity Coefficients and Its Limitations	178
*	Ion-Size Effect on Potential	185
*	Ion-Size Parameter and the Theoretical Mean - Activity Coefficient in the Case of Ionic C Finite-Sized Ions	
*	Debye-Huckel-Onsager Treatment for Aqueous Solutions and Its Limitations	190
*	Debye-Huckel-Onsager Theory for Non-Aqueous Solutions	195
*	The Solvent Effect on the Mobility at Infinite Dilution	196
*	Equivalent Conductivity (Λ) vs Concentration $C^{1/2}$ as a Function of the Solvent	198
*	Effect of Ion Association Upon Conductivity (Debye-Huckel-Bjerrum Equation)	200
*	Problems	209
*	Bibliography	210
CHAP'	ΓER 5	211
Qua	ntum Mechanics – II	211
*	Schrodinger Wave Equation for a Particle in a Three Dimensional Box	211

*	The Concept of Degeneracy Among Energy Levels for a Particle in Three Dimensional Box	215
*	Schrodinger Wave Equation for a Linear Harmonic Oscillator & Its Solution by Polynomial	
*	Zero Point Energy of a Particle Possessing Harmonic Motion and Its Consequence	
*	Schrodinger Wave Equation for Three Dimensional Rigid Rotator	231
*	Energy of Rigid Rotator	241
*	Space Quantization	243
*	Schrodinger Wave Equation for Hydrogen Atom: Separation of Variable in Polar Sp	
	Coordinates and Its Solution	
*	Principal, Azimuthal and Magnetic Quantum Numbers and the Magnitude of Their Values	
*	Probability Distribution Function	
*	Radial Distribution Function	278
*	Shape of Atomic Orbitals $(s, p \& d)$	281
*	Problems	287
*	Bibliography	288
CHAP	ГЕR 6	289
Ther	modynamics – II	289
*	Clausius-Clapeyron Equation	289
*	Law of Mass Action and Its Thermodynamic Derivation	293
*	Third Law of Thermodynamics (Nernst Heat Theorem, Determination of Absolute E	ntropy,
	Unattainability of Absolute Zero) And Its Limitation	296
*	Phase Diagram for Two Completely Miscible Components Systems	304
*	Eutectic Systems (Calculation of Eutectic Point)	311
*	Systems Forming Solid Compounds A _x B _y with Congruent and Incongruent Melting Points	321
*	Phase Diagram and Thermodynamic Treatment of Solid Solutions	332
*	Problems	342
*	Bibliography	343
CHAP	TER 7	344
Cher	nical Dynamics – II	344
*	Chain Reactions: Hydrogen-Bromine Reaction, Pyrolysis of Acetaldehyde, Decomposit	
*	Photochemical Reactions (Hydrogen-Bromine & Hydrogen-Chlorine Reactions)	
*	General Treatment of Chain Reactions (Ortho-Para Hydrogen Conversion and Hydrogen-B	
•	Reactions)	

*	Apparent Activation Energy of Chain Reactions	362
*	Chain Length	364
*	Rice-Herzfeld Mechanism of Organic Molecules Decomposition (Acetaldehyde)	366
*	Branching Chain Reactions and Explosions (H2-O2 Reaction)	368
*	Kinetics of (One Intermediate) Enzymatic Reaction: Michaelis-Menten Treatment	371
*	Evaluation of Michaelis's Constant for Enzyme-Substrate Binding by Lineweaver-Burk Pl Eadie-Hofstee Methods	
*	Competitive and Non-Competitive Inhibition	378
*	Problems	388
*	Bibliography	389
CHAP	ГЕR 8	390
Elect	rochemistry – II: Ion Transport in Solutions	390
*	Ionic Movement Under the Influence of an Electric Field	390
*	Mobility of Ions	393
*	Ionic Drift Velocity and Its Relation with Current Density	394
*	Einstein Relation Between the Absolute Mobility and Diffusion Coefficient	398
*	The Stokes-Einstein Relation	401
*	The Nernst-Einstein Equation	403
*	Walden's Rule	404
*	The Rate-Process Approach to Ionic Migration	406
*	The Rate-Process Equation for Equivalent Conductivity	410
*	Total Driving Force for Ionic Transport: Nernst-Planck Flux Equation	412
*	Ionic Drift and Diffusion Potential	416
*	The Onsager Phenomenological Equations	418
*	The Basic Equation for the Diffusion	419
*	Planck-Henderson Equation for the Diffusion Potential	422
*	Problems	425
*	Bibliography	426
INDEX	r	427

Mandeep Dalal (M.Sc, Ph.D, CSIR UGC - NET JRF, IIT - GATE) Founder & Director, Dalal Institute Contact No: +91-9802825820 Homepage: www.mandeepdalal.com E-Mail: dr.mandeep.dalal@gmail.com Mandeep Dalal is an Indian research scholar who is primarily working in the field of Science and Philosophy. He received his Ph.D in Chemistry from Maharshi Dayanand University, Rohtak, in 2018. He is also the Founder and Director of "Dalal Institute", an India-based educational organization which is trying to revolutionize the mode of higher education in Chemistry across the globe. He has published more than 40 research papers in various international scientific journals, including mostly from Elsevier (USA), IOP (UK) and Springer (Netherlands).

Main Market, Sector-14, Rohtak, Haryana-124001 (+91-9802825820, info@dalalinstitute.com) www.dalalinstitute.com